
DSP Control Group, Inc.

DSPL v5.311
A Guide to Programming DSPEtherCAT Master

DSPL

Programmer's Guide

v5.311

This documentation may not be copied, photocopied, reproduced, translated,
modified or reduced to any electronic medium or machine-readable form, in
whole or in part, without the prior written consent of DSP Control Group, Inc.

 Copyright 2010-2021 DSP Control Group, Inc.
 4445 W 77th Street
 Minneapolis, MN 55435
 Phone: (952) 831-9556
 FAX: (952) 831-4697

All rights reserved. Printed in the United States.

The authors and those involved in the manual's production have made every
effort to provide accurate, useful information.

Use of this product in an electro mechanical system could result in a mechanical
motion that could cause harm. DSP Control Group, Inc. is not responsible for
any accident resulting from misuse of its products.

DSPL, Mx4, Acc4, Vx4++, and Vx8++ are trademarks of DSP Control Group,
Inc.

Other brand names and product names are trademarks of their respective
holders.

DSPCG makes no warranty or condition, either expressed or implied, including
but not limited to any implied warranties of merchantability and fitness for a
particular purpose, regarding the licensed materials.

DSPL Programmer’s Guide v5.311 i

Contents

1 Introduction ..1-1

2 Installation ...2-1

3 Methods of Programming Mx43-1
Host-Based Programming...3-1
DSPL Programming ...3-2
Combining DSPL and Host-Based Programming3-3
Introduction to DSPL Programming...3-3
 PLC Programs...3-4
 Motion Programs ..3-5

4 DSPL Programming...4-1
DSPL Programming Basics ..4-2
 Program Entry...4-2
 Syntax ..4-2
Writing PLC Programs ...4-4
 What is a PLC Program? ...4-4
 PLC I/O Functionality ...4-9
 PLC Program Syntax ..4-9
 PLC Program Examples ...4-9
 PLC Program Specifications ..4-10
Writing Motion Programs...4-11
 What is a Motion Program?..4-11
 Motion Program Syntax..4-11
 Motion Program Examples...4-11
 Subroutine Structure...4-13

Contents

ii

 Motion Program Specifications ..4-14
Using # Includes Files ..4-14
Using # Define..4-15

5 DSPL Basics ...5-1
DSPL Identifiers ...5-1
 Variables...5-2
 Tables ..5-2
 State Variables..5-4
 Input Registers ..5-5
 Interrupt Registers ..5-6
 Drive Control (Vx4++) Parameters ..5-6
 Cam and Cubic Spline Table Counter5-7
 Constants ..5-7
 Timer…. ...5-7
DSPL Operators and Functions ..5-8
 Basic Arithmetic Operators ..5-8
 Elementary Math Functions..5-9
Trigonometric Functions ..5-10
Relational Operators ...5-10
Bitwise and Logical Operators ...5-11
Bit Register Functionality...5-11

6 DSPL Program Development...6-1
Opening DSPL Files...6-2
Editing Files..6-3
Compiling Files ..6-3
Downloading Files..6-4
Executing DSPL Programs...6-5
Monitoring Execution of DSPL Programs6-5
Closing the DSPL Development Tool ..6-6

7 Tutorial ..7-1

Session 1.....Getting Started...7-1

Contents

DSPL Programmer’s Guide v5.311 iii

Session 2.....Using Variables ...7-2
Session 3.....Mathematical Functions ..7-3
Session 4.....Electronic Gearing...7-4
Session 5.....Cam Programming...7-5
Session 6.....Linear Moves...7-7
Session 7.....Circular Moves ..7-8
Session 8.....Table-Based Cubic Spline7-9
Session 9.....ASCII Terminal Communication7-11
Session 10...Vector Control ...7-14
Session 11...Using Interrupts ...7-16
Session 12...EtherCAT Network..7-22

8 DSPL Command Set...8-1
Reference ..8-1
DSPL Command Summary ..8-5
 Control Law & Initialization ..8-6
 Simple Motion ..8-6
 PLC & Multitasking ...8-7
 Input / Output Control ..8-7
 Program Flow Control ..8-7
 Program Flow Control ..8-7
 Contouring..8-8
 Motor, Power, Sensors and Drive...8-8
 Coordinated Motion - Gearing ...8-9
 Coordinated Motion - Cam...8-9
 Single & Multi-Dimensional Interpolation...........................8-10
 Interrupt Control ...8-11
 ASCII Interface...8-11
 Filtering (Optional)...8-11
DSPL Command Set...8-12

Contents

iv

Appendix A ...A-1

DSPEtherCAT I/O Module Processing

Appendix B ...B-1

DSPEtherCAT Estop Processing

Appendix C ..C-1

Identifying Network Slaves Using User C Program

Appendix D ..D-1

Hardware and Network Connections

Contents

DSPL Programmer’s Guide v5.311 v

 This page intentionally blank.

DSPL Programmer's Guide v5.311 1-1

1 Introduction

Congratulations on purchasing a DSP Control Group's high-speed multi-DSP
motion controller. You will find DSPL a powerful language with an instruction
set suitable for all coordinated motion control applications.

This manual contains additional information specific to Turbo DSPL, a version
of DSPL which maximizes instruction throughput for higher performance.
Instruction listings in Chapter 8 include instruction timing information.

The DSPL Programmer’s Guide supports the 2-axis Mx42, the 4-axis
DSPEtherCAT, and the 8-axis DSPEtherCAT controllers. Unless otherwise
noted, descriptions are provided for the 8-axis DSPEtherCAT. When this
manual is used in conjunction with the 4-axis DSPEtherCAT or the 2-axis Mx42,
remember that the axes available are 1-4 for the DSPEtherCAT and 1-2 for the
Mx42 (rather than 1-8 for the DSPEtherCAT).

Also note that througout this manual, unless otherwise noted, the term Mx4 will
be used to refer generically to all three controllers.

In addition to this manual, you may find the following manuals helpful:

Mx4 User's Guide
These manuals include comprehensive information on
Mx42/Mx4/DSPEtherCAT hardware, software, system tuning, memory
organization, trouble shooting, and more. The User's Guide is the focal point in
learning the technical details of these products. All other manuals assume that
the user has familiarity with these manuals.

Mx4Pro Development Tools
This manual describes Mx4Pro - a testing and tuning software program used
with Mx42, Mx4, and DSPEtherCAT. Mx4Pro includes features such as a signal
generator, oscilloscope, and live block diagram which make the program useful
for testing and performance optimization.

Introduction

1-2

Vx4++ User's Guide
This manual includes information on the add-on drive control option. Vx4++ is
DSPCG's multi-DSP based drive controller that provides complete drive signal
processing for all industrial DC and AC machines. Vx4++ has capabilities that
are normally offered by servo control amplifiers.

Mx4 & Windows
If your motion application operates under the Windows 95 or Windows NT
operating system, you will want to utilize the Mx4 DLL. The Mx4 & Windows
manual accompanies the DLL, providing information for both Visual Basic and
C/C++ programming. The Mx4 DLL includes functionality in all aspects of
Mx42 / Mx4 / DSPEtherCAT use, including utilities for DSPL downloading,
DSPL execution start and stop, and much more.

DSPL Programmer's Guide v5.311
 2-1

2 Installation

The Mx4Pro Development Tools include DSPL Program Development as an
integrated part of the Tools. The Mx4Pro Development Tools provide both
first-time and experienced DSPL programmers with easy access to a host of
powerful development aids, ranging from simple DSPL tutorials to
compensation table download utilities for more advanced applications. As such,
it is strongly recommended that the Mx4Pro Development Tools be used for
DSPL program development. Within Mx4Pro, the DSPL Program Development
environment may be invoked via the DSPL icon on the main Mx4pro
Development Tools tool bar. Please refer to the Mx4Pro Development Tools
v5.x manual for software installation details.

Chapter 6, DSPL Program Development, contains helpful information which
details the use of the DSPL Program Development environment within the
Mx4Pro Development Tools.

DSPL program development may also be integrated into any Windows 95 or
Windows NT application via the DSPL utilities provided in the Mx4 DLL.
Refer to the Mx4 & Windows manual or contact DSPCG for more information.

Installation

2-2

This page intentionally blank.

DSPL Programmer's Guide v5.311 3-1

3 Methods of
Programming Mx4

Before we immerse ourselves in the specifics of DSPL programming. let's look
at the two different methods of programming the Mx4 controller. DSP Control
Group has applied years of experience in the motion control industry to the
development of Mx4's dual programming platform. Mx4 may be programmed
via real time Host-based programming, or at a DSPL (internal language of Mx4)
level, or a combination of both.

Host-Based Programming

Host-based programming entails real-time communication between the host
computer and the Mx4 card across the host computer bus. This communication
originates from an Mx4 motion application running on the host computer. The
host computer may read and write to the Mx4 card as it would any computer
peripheral. The user chooses the programming language for the host computer
program. For example, it may be a DOS application written in C, or maybe a
Visual Basic Windows NT application. DSPCG provides programming utilities
ranging from C functions to Visual Basic / C DLLs for host-based program
development. This host program includes the following: facilities to transfer
commands to the Mx4 card through the host bus, any conditional program code
execution routines, PLC emulation code, an optional interrupt service routine to
handle any enabled Mx4 interrupts, Mx4 system parameter readback routines,
plus any other software features required for the application. When using host
programming, an executable host program runs the operation of the Mx4 card in
real time.

Note: Mx4 Host programming is described in detail in the Mx4
User's Guide. This document, the DSPL Programmer's Guide,
focuses on Mx4 DSPL programming.

Methods of Programming Mx4

3-2

HOST
COMPUTER

code generation

assembly, C, Pascal, etc.

executable code

executable program running
on host computer

Mx4 real-time commands

Mx4 executes real-time host commands

host interrupts
system parameter readback

Fig. 3-1: Mx4 Host-Based Programming

DSPL Programming

The Mx4's high-level DSPL programming platform enables complete motion
control applications to be written in the DSPL programming language,
downloaded once to the Mx4 card, and executed by the Mx4 card. The DSPL
programming language is a powerful, full-featured, yet easy to use language that
includes features such as conditional program execution, subroutine calls,
separate PLC and motion programming facilities, and the ability to run PLC and
multiple Motion programs simultaneously on the Mx4 card.

A DSPL program consists of a text file which may be written with any text
editor. The DSPL code is then compiled and downloaded to Mx4's memory.
With the use of the optional non-volatile battery-backup memory available for
Mx4, standalone operation is possible once the DSPL program is downloaded to
the card. Once the DSPL code is loaded into Mx4's memory, Mx4 may begin
executing the code. DSPL code execution by Mx4 is independent of the host
computer.

HOST
COMPUTER

code generation

DSPL text file

DSPL compiler

DSPL code downloaded to Mx4

DSPL code stored in Mx4 memory

DSPL program runs on Mx4 independent
of host computer operation

Mx4 DSPL code

Mx4 can run as a stand-alone unit

Mx4 DSPL code transfer

Fig. 3-2: Mx4 DSPL Programming

Methods of Programming Mx4

DSPL Programmer's Guide v5.311 3-3

Combining DSPL & Host-Based Programming

Although both the Host and DSPL Mx4 programming techniques are full
featured and self-supporting, you may choose to combine the two, drawing the
advantages of both techniques in solving a particular programming application.
While running or executing DSPL PLC and Motion programs, Mx4 is still
completely programmable via the host (Host-based programming methods). This
feature of Mx4 allows for a combination of Host and DSPL programming. In
addition, a synchronizing timing structure may be established between an
executing DSPL program and the host computer via Mx4's powerful command
sets.

Introduction to DSPL Programming

DSPL was designed to combine the flexibility of low-level instructions with the
convenience of a high-level language. To use DSPL, only a minimum
programming background is required, since DSPL only contains common sense
language constructs. If you are a first time DSPL programmer, you will find
yourself writing simple applications in minutes with the aid of the Mx4pro
Development Tools and included tutorials.

DSPL is a powerful programming language designed to take advantage of Mx4's
multi-DSP architecture and multi-tasking capabilities. DSPL includes low and
high-level instructions that make it ideal for both simple and more advanced
motion control programming.

A typical DSPL program consists of two distinct portions, PLC programming
code and Motion programming code. A DSPL program always includes a single
PLC sub-program and any number of Motion sub-programs (Fig. 3-3). (In this
manual the PLC and Motion sub-programs will be referred to as PLC and
Motion programs).

Methods of Programming Mx4

3-4

plc_program:

end

initialize parameters and gains
perform logical operations on I/Os
start motion programs

motion_prog_1:

end

motion_prog_2:

end

motion_prog_n:

end

do simple and coordinated moves
perform logical operations
do conditional branching
call subroutines
check interrupts

.

.

.

Fig. 3-3: A Typical DSPL Program Sheet

Mx4 is capable of running the PLC program and up to two Motion programs
simultaneously. Mx4 Octavia is capable of running the PLC program and up to
three Motion programs simultaneously.

PLC Programs
The PLC program is typically used as a "monitor" program emulating a
Programmable Logic Controller. As is indicated in Fig. 3-3, the PLC may be
used to execute initialization routines, monitor system status, perform logical
operations based on input/output, run Motion programs, perform conditional
Motion program execution, and many more application-specific functions.

Based on a logical combination of inputs and/or dynamic system state values
(e.g., position, position error, or velocity), the PLC can make an executive
decision. The decision can be as simple as setting an output bit or executing one
or several motion programs simultaneously.

Methods of Programming Mx4

DSPL Programmer's Guide v5.311 3-5

As an example, consider the following simple PLC program.

PLC_PROGRAM

 #include "INIT.hll"

 VAR1 = 0
 run_m_program (INIT_MX4)
 wait_until (INP1_REG & 0x0001)
 run_m_program (PROFILE_1)

END

This PLC program, although very simple, illustrates some important
fundamentals of PLC programming such as variable and system initialization and
conditional Motion program execution.

Motion Programs
The Mx4’s multi-tasking operating system allows simultaneous execution of the
PLC program and up to three Motion programs. DSPL Motion programs consist
of either conditional or unconditional execution of DSPL commands (both
motion and non-motion related), logical operations, conditional branching,
subroutine calls, the issuance of interrupts, etc. A Motion program is initiated by
the PLC program, but runs independent of the PLC.

Motion programs may contain I/O instructions similar to those found
traditionally in the PLC. The Motion programs resemble C code and include
common logical and conditional constructs such as if, endif, while, wend, etc. A
Motion program can include several hundred lines of high-level commands, or,
in a shorter form, can include several calls to subroutines performing a dedicated
task.

Methods of Programming Mx4

3-6

The following is an example of a simple Motion program.

SEG_A1_TO_B1:

 pos_preset (0x3,1000,3500)

 if ((POS3 > 500) and (CVEL1 = 0))
 linearmove (0x2,0,0,1000,1.0,2,0.025)
 circle (0xC,0,1000,500,0.75,0,0)
 endif

END

DSPL Programmer's Guide v5.311 4-1

4 DSPL Programming

As we have seen, a DSPL program consists of two parts: the PLC sub-program
and the Motion sub-program(s) (Fig. 4-1)

plc_program:

end

initialize parameters and gains
perform logical operations on I/Os
start motion programs

motion_prog_1:

end

motion_prog_2:

end

motion_prog_n:

end

do simple and coordinated moves
perform logical operations
do conditional branching
call subroutines
check interrupts

.

.

.

Fig. 4-1: A Typical DSPL Program Sheet

The PLC and Motion programs together are collectively referred to as a DSPL
program. The DSPL program is merely a text file, which is then compiled and
downloaded to the DSPEtherCAT card. The following sections illustrate some of
the basics of DSPL programming.

Mx4 DSPL Programming

4-2

DSPL Programming Basics

Program Entry
The DSPL program is a text file containing a series of DSPL commands,
keywords, and operators, which make up the PLC and (any number of) Motion
programs. A DSPL program may consist of a maximum of 2048 DSPL
command lines. The DSPL program may be entered with any standard text
editor via the Mx4pro Development Tool (see Chapter 6, DSPL Program
Development).

The DSPL program file must be a suffix of .hll. For example:

 filename.hll

Note: The .hll suffix is required in order for the DSPL program file
to be compiled by the DSPL compiler.

Syntax

Note: The syntax for the usage of individual DSPL commands is
included in the listing of each of the commands (see DSPL
Command Set).

The DSPL programming language follows some very simple structural syntax
rules.

Mx4 DSPL Programming

DSPL Programmer's Guide v5.311 4-3

Upper & Lower Case Characters

DSPL programs may be written in either upper or lower case characters, or any
combination of such. The DSPL compiler does not differentiate between upper
and lower case. The following example Motion program illustrates this point,

EXAMPLE:

 var1=1
 VAR2=33

 if(inp1_REG&0x0010)
 maxacc(0x1,0.024)
 VELMODE(0x1,6.5)
 ENDIF

end

In order to ease program readability, it is advisable that the programmer follows
a procedure for the use of upper and lower case characters. For example, the
programmer may wish to reserve upper case characters for program labels and
variable designators,

EXAMPLE:

 VAR1=1
 VAR2=33

 if(INP1_REG&0x0010)
 maxacc(0x1,0.024)
 velmode(0x1,6.5)
 endif

END

Blank Space

The DSPL compiler does not require any spacing or carriage returns between
commands. For example, the following example Motion program is a valid
program,

EXAMPLE: VAR1=1VAR2=33 if(INP1_REG& 0x0010)
maxacc (0x1, 0.024)velmode
 (0x1,6.5)
endif END

Again, it is strongly advised that the programmer use a spacing procedure with
spaces, tabs, and/or carriage returns in order to increase readability of the
program as well as to indicate program flow and structure.

EXAMPLE:

Mx4 DSPL Programming

4-4

 VAR1 = 1
 VAR2 = 33

 if (INP1_REG & 0x0010)
 maxacc (0x1,0.024)
 velmode (0x1,6.5)
 endif

END

Commenting Programs

It is often convenient to place comments or notes in a program in order to
improve the program’s readability. In DSPL a comment always begins with a
semi-colon (;) and ends with a carriage return. For example,

;This program is an example

EXAMPLE:

 VAR1 = 1 ;initialize variable 1
 VAR2 = 33 ;define VAR2=33

 if (INP1_REG & 0x0010) ;if IN1(1) input is
 maxacc (0x1,0.024) ;set, then initiate
 velmode (0x1,6.5) ;velocity mode motion
 endif

END

Writing PLC Programs

What is a PLC Program?

Each DSPL program must include a single PLC program. The PLC (or
Programmable Logic Controller) program is typically used as a monitor
program, utilizing input logic and/or system parameter conditions for evaluating
conditional expressions, and initiating the execution of Motion programs.

Mx4 DSPL Programming

DSPL Programmer's Guide v5.311 4-5

plc_program:

end

initialize parameters and gains
perform logical operations on I/Os
start motion programs

motion_prog_1:

end

motion_prog_2:

end

motion_prog_n:

end

do simple and coordinated moves
perform logical operations
do conditional branching
call subroutines
check interrupts

.

.

.

Fig. 4-2: A Typical DSPL Program Sheet, PLC Program Highlighted

Due to its “monitoring” function, the PLC program must execute in an
uninhibited fashion. For this reason, the PLC program is limited as to the DSPL
commands, which may appear within it. For example, a DELAY command is not
allowed in the PLC program, since the PLC program code execution halts during
the specified duration of the DELAY command, impairing the PLC "monitoring"
function. Also, motion and system commands are restricted from use in the PLC
program. In short, only those commands, operators, and keywords related to
system initialization, conditional expression evaluation, and Motion program
execution are available to the PLC program.

The DSPL command listings (see DSPL Command Set) include a USAGE
category that indicates whether or not the command is available for use in the
PLC program. The following table indicates the PLC and/or Motion program
usage of the DSPL commands.

Mx4 DSPL Programming

4-6

Note : Operators and identifiers are not PLC/Motion program
sensitive.

DSPL COMMANDS PLC MOTION
ABS  
ADC1, ADC2, ADC3, ADC4  
AND, OR  
ARCTAN  
AXMOVE 
AXMOVE_S CNC option 
AXMOVE_T CNC option 
BTRATE CNC option 
CALL 
CAM 
CAM_OFF 
CAM_OFF_ACC 
CAM_POINT 
CAM_POS 
CAM_PROBE CNC option 
CAMCOUNT1, …,
CAMCOUNT8

 

CIRCLE 
COS  
CPOS1, …, CPOS8  
CTRL 
CTRL_KA CNC option 
CUBIC_INT 
CUBIC_RATE 
CUBIC_SCALE 
CURR_LIMIT 
CURR_OFFSET 
CURR_PID 
CVEL1, …, CVEL8  
DDAC CNC option 
DELAY 
DISABL_INT 
DISABL2_INT 
ELSE  
EN_BUFBRK CNC option 
ENCOD_MAG CNC option 
ENDIF  
EN_ENCFLT CNC option 
EN_ERR 
EN_ERRHLT 
EN_INDEX CNC option 
EN_MOTCP 
EN_POSBRK 
EN_PROBE CNC option 

Table 4-1: DSPL Command Usage Listing

Mx4 DSPL Programming

DSPL Programmer's Guide v5.311 4-7

DSPL COMMANDS PLC MOTION
ERR1, …, ERR8  
ESTOP_ACC 
ESTOP_REG  
FERR_REG  
FERRH_REG  
FLUX_CURRENT CNC option 
FRAC  
GEAR 
GEAR_OFF 
GEAR_OFF_ACC 
GEAR_POS 
GEAR_PROBE CNC option 
ICUBCOUNT  
IF  
INDEX_POS1, …, INDEX_POS8  
INDEX_REG  
INP1_REG, INP2_REG  
INP_STATE CNC option 
INPUT 
INT  
INT_HOST  
INT_REG_ALL_CLR  
INT_REG_CLR  
KILIMIT CNC option 
LINEAR_MOVE 
LINEAR_MOVE_S CNC option 
LINEAR_MOVE_T CNC option 
LOW_PASS CNC option 
MAXACC 
MOTCP_REG  
MOTOR_PAR DRV option 
MOTOR_TECH DRV option 
NOTCH CNC option 
OFFSET CNC option 
OFFSET_REG CNC option 
OUTGAIN CNC option 
OUTP_OFF  
OUTP_ON  
OVERRIDE CNC option 
PI  
POS1, …, POS8  
POSBRK_OUT 
POSBRK_REG  
POS_PRESET 
POS_SHIFT 
PROBE_REG CNC option 
PRINT PRT option 

Table 4-1 cont.: DSPL Command Usage Listing

Mx4 DSPL Programming

4-8

DSPL COMMANDS PLC MOTIO

N
PRINTS PRT option 
PROBE_POS1, …, PROBE_POS8 CNC option 
PWM_FREQ DRV option 
REL_AXMOVE 
REL_AXMOVE_S CNC option 
REL_AXMOVE_T CNC option 
REL_AXMOVE_SLAVE 
RESET 
RET 
RUN_M_PROGRAM  
SIGN  
SIN  
SINE_OFF  
SINE_ON  
SQRT  
START 
 
STOP 
STOP_ALL_M_PROGRAM  
STOP_M_PROGRAM  
SYNC CNC option 
TABLE_OFF CNC option 
TABLE_ON CNC option 
TABLE_P, TABLE_V CNC option 
TABLE_SEL CNC option 
TAN  
TIMER, TIMER_RESET  
TRQ_LIMIT 
VAR1, …, VAR128  
VECCHG 
VECT4_PAR1, …, VECT4_PAR8  
VX4_BLOCK 
VEL1, …, VEL8  
VELMODE 
VIEWVEC 
WAIT_UNTIL  
WAIT_UNTIL_RTC  
WEND  
WHILE  
=  
+  
-  
*  
/  
~  
&  
<, >, <=, >=, ==, !=  

Mx4 DSPL Programming

DSPL Programmer's Guide v5.311 4-9

Table 4-1 cont.: DSPL Command Usage Listing

The PLC program controls the execution of the Motion programs contained in
the DSPL program. The PLC program and up to three Motion programs can be
running simultaneously on DSPEtherCAT.

PLC I/O Functionality

In addition to scanning inputs within the PLC program, the ability to change
output status has been added. The OUTP_ON and OUTP_OFF commands may be
used within the PLC program.

PLC Program Syntax
The first line of the PLC program is must be the label PLC_PROGRAM followed by
a colon (:). The last line of the PLC program must be the keyword END.

PLC_PROGRAM:

 ;PLC program code here

END

PLC Program Examples

Example 1

The following PLC program,

1) initializes two variables, VAR1 and VAR2
2) initializes the DSPEtherCAT gains, etc. by running an initialization

Motion program
3) initiates execution of TEST_1 Motion program
4) monitors the axis 1 following error, initiating halting procedure if error

exceeds limit

PLC_PROGRAM:

 VAR1 = 0 ;initialize variables
 VAR2 = 1

 run_m_program(MX4_INIT) ;run initialization program
 wait_until(VAR1 == 1) ;wait for variable condition
 run_m_program(TEST_1) ;run TEST_1 program
 wait_until(ERR1 > 500) ;monitor motor 1 error
 run_m_program(HALT_ALL) ;run halting procedure

Mx4 DSPL Programming

4-10

END

Example 2

PLC programs may initiate simultaneous up to three Motion programs (using
Mx4's multi-tasking capabilities) and repeat execution of Motion programs.

PLC_PROGRAM:

 VAR1 = 1

 run_m_program (PRG_1,) ;PRG_1
 while ((CPOS1 > -1)or(CPOS1 < 1)) ;endless while case
 if (VAR1 == 1)
 VAR1 == 0
 run_m_program (EX) ;EX program executed repeatedly
 endif
 wend

END

Note : Additional PLC programming examples may be found in the
Applications Notes chapter.

PLC Program Specifications

Stack Size

Stack size refers to the allowable depth of nested IF-THEN structures in the PLC
program. DSPL allows a maximum of 256 IF-THEN constructs in a PLC
program.

Mx4 DSPL Programming

DSPL Programmer's Guide v5.311 4-11

Writing Motion Programs

What is a Motion Program?
DSPL Motion programs include all of the capabilities of the PLC program in
addition to system and motion-related commands. The function of a particular
Motion program, thus, is defined by the requirements of an application. The
Motion program may emulate PLC monitoring functions or motion commands
such as circular and linear interpolations, or a combination of those commands.

plc_program:

end

initialize parameters and gains
perform logical operations on I/Os
start motion programs

motion_prog_1:

end

motion_prog_2:

end

motion_prog_n:

end

do simple and coordinated moves
perform logical operations
do conditional branching
call subroutines
check interrupts

.

.

.

Fig. 4-3: A Typical DSPL Program Sheet, Motion Program Highlighted

The complete DSPL command set is available to Motion programs (see Table
4-1). A DSPL program may contain any number of Motion programs (as
opposed to the PLC program, of which only one is permitted). A particular
application may require only a single Motion program, whereas the needs of
another application may be better served by 20 different Motion programs. The

Mx4 DSPL Programming

4-12

number of Motion programs used in a DSPL program depends both on a
particular application and on the programmer’s preferences.

In addition to the PLC program, up to three Motion programs can be executed
simultaneously on DSPEtherCAT.

The execution of a motion program is initiated by the RUN_M_PROGRAM DSPL
command. The execution of a motion program may be terminated by one of the
following cases:

 The motion program terminates itself upon reaching the END mark of the

program

 The DSPL commands STOP_M_PROGRAM and STOP_ALL_M_PROGRAM will

terminate motion program execution

 The host-programming STOP_DSPL RTC will terminate DSPL program

execution (and thus any motion programs)

Motion Program Syntax
The first line of a Motion program is its label, up to 21 characters long followed
by a colon (:). The last line of this program must be the keyword END. For
example,

CURVE_43DEG:

 ;CURVE_43DEG program code here

END

Motion Program Examples

Example 1

The MX4_INT Motion program sets the gains, maximum acceleration, and
integral gains limits for axis 1 and axis 4.

 MX4_INT:

Mx4 DSPL Programming

DSPL Programmer's Guide v5.311 4-13

 ;initialize DSPEtherCAT parameters

 ctrl (0x9,10,10000,0,2000,0,10000,500,1000)
 maxacc (0x9,0.05,0.13)
 estop_acc (0x9,0.2,0.2)
 kilimit (0x9,2,3)

 VAR1 = 1

 END

Example 2

The following Motion program performs a simple trapezoidal velocity profile to
move motor 3 to target position of 100,000 counts. When the target command
position is reached, Mx4 output OUT0 is set. Motion programs can initiate the
execution of other Motion programs (similar to the PLC program function) as is
included in the TEST example Motion program.

 TEST:

 axmove (0x4,0.855,100000,3.4) ;trapezoidal profile
 wait_until (CPOS3 == 100000) ;wait for end of move
 outp_on (0x0001) ;see OUT0
 if (INP1_REG & 0x0200) ;if input condition is
 run_m_program (TEST2) ;met, run TEST2
 endif

 END

Note : Additional Motion programming examples may be found in
the Applications Notes chapter.

Subroutine Structure
Subroutine calls (up to 15 levels deep) may be made in Motion programs via the
CALL and RET commands. The structure of the subroutine itself is identical to the
Motion program structure with the exception that RET commands are placed in
the subroutine program code to indicate at which point in the subroutine code
that the program flow should return to the calling Motion program.

As an example, consider the following subroutine program with three return
options,

INPUT_CHECK:

Mx4 DSPL Programming

4-14

 if (INP1_REG & 0x1010)
 VAR3 = 12
 ret ()
 else
 if (INP1_REG & 0x0035)
 pos_preset (0x4,20000)
 ret ()
 endif
 endif
 axmove (0x1,0.15,1000,5.0)
 wait (CPOS1 = 1000)
 ret ()

END

Motion Program Specifications

Stack Size

Stack size refers to the allowable depth of nested IF-THEN structures in a
Motion program. DSPL allows a maximum of 256 IF-THEN constructs in a
Motion program.

Using #include files

Many DSPL programs may share similar routines such as DSPEtherCAT card
initialization routines or emergency motion-halting routines. Rather than copying
duplicate Motion programs between DSPL files, the user may wish to use the
DSPL compiler #include operand. The #include operand, when used in a
DSPL file, allows the DSPL programmer to link the DSPL file with the specified
#include file. An #include file may contain any number of Motion programs or
subroutine codes and, like a DSPL file, must have the .hll extension. The
#include file must be within the same directory as the DSPL file when the
DSPL file is compiled.
The correct syntax for the #include operand is,

 #include "filename.hll"

The #include operand(s) must appear at the beginning of the DSPL file,
separate from the PLC and any Motion programming in the file. For example,
consider the following DSPL program which includes an #include compiler
operand,

 #include "init.hll"

Mx4 DSPL Programming

DSPL Programmer's Guide v5.311 4-15

PLC_PROGRAM:

 run_m_program (MX4_INIT)

END

where the init.hll file consists of,

MX4_INIT:

 ctrl (0x1,10,10000,5000,3400)
 kilimit (0x1,2)
 maxacc (0x1,0.5)
 estop_acc (0x1,1.0)

END

Using #define

#define may be used in DSPL programming to customize or personalize VARx
variable definitions. #define allows the DSPL programmer to assign names to
VARx variables. For example,

 #define LENGTHX VAR13
 #define toolradius VAR7

#defines should be located to the top of the .HLL DSPL text file. References to
the variables in the PLC and motion program (s) may use the defined name or
the standard VARx syntax.

Mx4 DSPL Programming

4-16

This page intentionally blank.

DSPL Programmer's Guide v5.311 5-1

5 DSPL Basics

 Now that you have gained some familiarity with a DSPL program and the PLC and Motion

programs which comprise it, let's look at the specific components which make up both PLC
and Motion programs. DSPL includes a number of identifiers, operators, and functions.

DSPL Operators DSPL Identifiers and Functions

  Variables  Basic Arithmetic Operators
  Tables  Elementary Math Functions
  State Variables  Trigonometric Functions
  Input Registers  Relational Operators
  Interrupt Registers  Logical Operators
  Drive Control Parameters
  Cam & Cubic Spline Table
 Counters
  Constants

DSPL Identifiers

The DSPL programming language contains a number of identifiers. The DSPL identifiers allow users to:
 Store, retrieve, and modify floating point numbers.
 Create tables.
 Obtain information about system state variables such as position, velocity, and error values.
 Read the status of the Mx4 input registers.
 Check the status of the Mx4 interrupt registers.

DSPL Basics

5-2

Variables

IDENTIFIER DESCRIPTION
VAR1 to VAR128 General purpose DSPL variables 1 to 128

The DSPL language includes 128 general-purpose variables, which store data in
either floating point format for extended precision or as bit registers (when used in
bit register operations, see Bit Register Functionality). Variables can be used in
assignment, function, and relational operations.

 var3 = var2/var25
 var4 = sin(var6)
 if (var3 > = var4)

Variables can also be used as arguments in DSPL commands. This permits the real time
adjustment of motion parameters. For example, the DSPL line:

 axmove(1, var19, var2, var62)

uses variables to perform a real time update of acceleration, slew rate, and target position in
a trapezoidal move.

Variables can also be used to store and retrieve data from a table location.

 table_p(1) = var23
 table_v(91) = var11

The first line (involving TABLE_P) saves VAR23 in the position format (32-bit value) in
the table at location 1. The second line (involving TABLE_V) saves the floating-point
value VAR11 in the velocity format (25 bit two’s complement value sign extended to
32 bits, the least significant 16 bits represent the fractional value) in the table at
location 91. Tables are discussed further in the next section.

Tables

IDENTIFIER DESCRIPTION
TABLE_P Mx4 position table. Stores integer values
TABLE_V Mx4 velocity table. Stores floating point values

DSPL offers 4096 (32-bit) table locations. Table locations can be used to save
either integer or fractional values. Integer values (such as positions) can be
stored in TABLE_P, while values involving fractions (such as velocities) can be
stored in TABLE_V. Numbers in TABLE_P are stored as 32-bit values, while the

 DSPL Basics

DSPL Programmer's Guide v5.311 5-3

values in TABLE_V are stored as 25-bit values (sign extended to 32 bits) where the
least significant 16 bits represent the fractional portion of the value. The index
into the table can be specified as either a constant or a variable. For example:

 table_p(17) = 42.5

saves integer value 42 at index 17. Whereas

 var50 = 23
 table_v(var50) = 42.5

will save 42.5 at index 23.

The values to be stored in the table can be specified by either a constant or a variable.
Therefore,

 var49 = 42.5
 table_p(17) = var49
 table_v(23) = var49

will result in the exact same table values as the previous two examples.

Values can also be retrieved from the table. For example, continuing with the previous
example:

 var33 = table_v(23)

retrieves the fractional value stored at index 23 of TABLE_V (that is 42.5 if we use the
previous example) and stores the value into VAR33. The DSPL instruction:

 var26 = table_p(17)

reads the value stored in index 17 of TABLE_P (i.e. 42 if we continue using the previous
examples) in VAR26.

For a slightly more involved example, the DSPL diagram below

 var3 = 1
 while (var3 <= 25)
 table_p(var3) = var3
 var3 = var3 + 1
 wend

will save the integer values 1 through 25 in the table locations indexed from 1 to
25. The information saved in the locations indexed from 1 through 25 can be

DSPL Basics

5-4

retrieved using the following DSPL code: (note that VAR5 will be overwritten
with a new table value each pass through the WHILE structure.)

 var3 = 1
 while (var3 <= 25)
 var5 = table_p(var3)
 var3 = var3 + 1
 wend

State Variables

IDENTIFIER DESCRIPTION
CPOS1-8 Command position, axes 1-8
CVEL1-8 Command velocity, axes 1-8
ERR1-8 Following error, axes 1-8
INDEX_POS1-8 Index-capture position, axes 1-8
POS1-8 Actual position, axes 1-8
PROBE_POS1-8 Probe-capture position, axes 1-8
VEL1-8 Actual velocity, axes 1-8

The system state variable values such as position, velocity, and error are available in DSPL
as 32-bit registers. The state variables can be used to set the value of a variable. For
example:

 var11 = POS3

sets the value of VAR11 to the actual position value of axis 3

State variable can also be used (either alone or in conjunction with variables) in the DSPL
conditional structures IF, WHILE, and WAIT_UNTIL. For example,

 wait_until (POS3 >= var23)

prevents execution of the next instruction until the actual position of axis 3 is greater than or
equal to the value stored in VAR23.

 DSPL Basics

DSPL Programmer's Guide v5.311 5-5

Drive Control (Vx4++) Parameters

IDENTIFIER DESCRIPTION
VECT4_PAR1-8 Vx4++ drive control parameters 1-8

When using the Vx4++ option, Vx4++ state variables are available in Mx4s’ DSPL
programming language. The drive control parameters VECT4_PAR1 through VECT8_PAR4 can
be assigned one of the following drive variables:

 Iqs, Ids, Ir, Is, Iqs (feedback), Ids (feedback)

The DSPL command VIEWVEC can be used to determine which one of the above drive
variables is assigned to each of the drive control parameters. The following DSPL code:

 viewvec (0x1,3)
 var2 = vect8_par1

assign phase current Is to var2.

Cam and Cubic Spline Table Counter

IDENTIFIER DESCRIPTION
CAMCOUNT1-8 Cam slave axis table index
ICUBCOUNT Cubic spline table index

CAMCOUNT1-8 indicates the table index for the slave axes (1-8) engaged in camming.

The users utilizing Mx4’s internal cubic command can benefit from the ICUBCOUNT counter.
This DSPL reserved word is used in conjunction with cubic spline instructions and indicates
the active cubic spline table index.

Constants

IDENTIFIER DESCRIPTION
PI Approximation to  (3.14159265)

The DSPL constant PI is a reserved word that can be used in arithmetic, trigonometric, and
conditional expressions as an approximation to the value  (3.14159265).

DSPL Basics

5-6

 var1 = pi/2
 var2 = cos(pi)

Timer

The keyword TIMER on Mx4/Mx42 (TIMER1, TIMER2, TIMER3, and TIMER4 on Octavia) may
be read into a variable or used in conditional statements such as IF, WHILE, or WAIT_UNTIL.
The timer units are 200sec. The timer may be reset with the TIMER_RESET() command.
Note that the timer is always running, and that the TIMER_RESET() command will reset the
timer value to 0.

For example, to turn on outputs 0, 1, and 2 in succession 750msec apart, the following
Mx4/Mx42 code is used.

 TIMER_RESET ()
 OUTP_ON (0x0001)
 WAIT_UNTIL (TIMER >= 3750)
 OUTP_ON (0x0002)
 WAIT_UNTIL (TIMER >= 7500)
 OUTP_ON (0x0004)

DSPL Operators and Functions

The DSPL operators and functions act on either one or two of the DSPL identifiers. A
sample DSPL program using its operators and functions is shown below:

 var1 = -1.92
 var2 = 3.285e+003
 var3 = var1/var2 ;var3 is set to
 ;0.0005916795069
 var8 = abs(var1) ;var8 is set to 1.92
 var5 = sqrt(var2) ;var5 is set to 56.9689015
 var6 = sin(2.1) ;var6 is set to 0.863209366

The following sections briefly describe each of the operators and functions.

Basic Arithmetic Operators

OPERATOR DESCRIPTION
= Assignment
+ Addition
- Subtraction
* Multiplication

 DSPL Basics

DSPL Programmer's Guide v5.311 5-7

/ Division

The assignment “=” operator is the simplest of the DSPL operators, and can be used to set
the value of a variable or a table entry equal to a constant value. For example:

 var1 = -1.92
 var2 = 3.285e+003
 var3 = 0x38 ;var3 is set to a hexadecimal number
 value 38 = 52

The assignment operator can also be used to set the value of a variable equal to the result of
an arithmetic operation. For example:

 var1 = -1.92
 var2 = 3.285e+003
 var3 = var1 + 11.1 ;var3 is set to 9.18
 var8 = var1/var2 ;var8 is set to -
 ;0.0005916795069

Elementary Math Functions

FUNCTION DESCRIPTION
ABS() Absolute value
FRAC() Fraction function
INT() Integer function
SIGN() Sign function
SQRT() Square root

function

The elementary math functions work on a single variable or constant value. The examples in
this section continue the example in the previous section.

The function ABS() finds the absolute value of a constant or a variable value.

 var5 = abs(var1) ;var5 is set to 1.92

The function FRAC() extracts the fractional portion of a constant or a variable value.

 var6 = frac(var1) ;var6 is set to -0.92

The function INT() extracts the integer portion of a constant or a variable value.

 var7 = int(var1) ;var7 is set to -1

The function SIGN() returns +1, 0 or -1 depending on whether a constant or a variable
value is greater than, equal to, or less than 0.

DSPL Basics

5-8

 var8 = sign(var1) ;var8 is set to -1

The function SQRT() calculates the square root of a constant or a variable value.

 var9 = sqrt(var2) ;var9 is set to 56.9689015

Trigonometric Functions

FUNCTION DESCRIPTION
ARCTAN() Arctangent function
COS() Cosine function
SIN() Sine function
TAN() Tangent function

Trigonometric functions work on either constant or variable values. The arguments in the
functions SIN, COS, and TAN are expressed in radians. The result of ARCTAN is expressed in
radians.

 var1 = 1.5707
 var3 = sin(var1) ;var3 is set to 0.99999999
 var8 = cos(var1) ;var8 is set to 0.000096326
 var5 = arctan(var1) ;var5 is set to 1.00805632

Relational Operators

OPERATOR DESCRIPTION
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

Relational operators are used in conditional statements in the DSPL conditional structures
IF, WHILE and WAIT_UNTIL. For example:

 wait_until(POS1 >= 38)

will prevent execution of the next instruction until the actual position of the first axis (i.e.
POS1) is greater than or equal to 38 counts.

 DSPL Basics

DSPL Programmer's Guide v5.311 5-9

Bitwise and Logical Operators

OPERATOR DESCRIPTION
~ Bitwise

complement
& Bitwise AND
AND Logical AND
OR Logical OR

Bitwise and logical operators are used with both input and interrupt registers in
conditional expressions. The bitwise operator “&” is used for masking a selected
number of bits in an input or interrupt register. The bitwise operator “~“ complements
the contents of a register. Logical operators AND/OR work on the conditional
statements in the DSPL conditional structures IF, WHILE, and WAIT_UNTIL. For
example, the DSPL conditional expression line below:

 if ((inp1_reg & 0x3) AND (~inp2_reg & 0x1))

will first mask all but the two least significant bits of input register 1, then mask all
but the least significant bit of the complemented input register 2, and finally perform
a logical AND of the results. For a bitwise condition to be true, there must be an
exact match between set bits in the mask and corresponding bits of the register (or
~register).

Bit Register Functionality

Bit Register Functionality enables variables to be manipulated as 16-bit bit registers.
Specifically, the following bit register operations are available.

 VAR[1-128] = hex constant

 for example, VAR41 = 0xA055

 VAR[1-128] = bit register (registers ending with _reg, such as inp1_reg)

 for example, VAR33 = INP2_REG
 VAR15 = MOTCP_REG

 VAR[1-128] = VAR[1-128] & 16-bit mask

 for example, VAR1 = VAR1 & 0x00FF
 VAR12 = VAR12 & 0x0003

DSPL Basics

5-10

 VAR[1-128] = VAR[1-128] | 16-bit mask

 for example, VAR51 = VAR3 | 0xFF00
 VAR2 = VAR2 | 0x0001

 VAR[1-128] = VAR[1-128] & VAR[1-128]

 for example, VAR1 = VAR1 & VAR44
 VAR12 = VAR12 & VAR1

 VAR[1-128] = VAR[1-128] | VAR[1-128]

 for example, VAR21 = VAR3 | VAR15
 VAR8 = VAR72 | VAR82

 VAR[1-128] = ~ VAR[1-128] bitwise complement

 for example, VAR59 = ~ VAR3
 VAR24 = ~ VAR8

 Logical condition checks for IF, WAIT_UNTIL, WHILE
 VAR[1-128] & 16-bit mask
 VAR[1-128] | 16-bit mask
 ~VAR[1-128] & 16-bit mask
 ~VAR[1-128] | 16-bit mask

 for example, WAIT_UNTIL(VAR24 & 0x0010)
 WHILE(~VAR1 & 0x0001)

 DSPL Basics

DSPL Programmer's Guide v5.311 5-11

 EtherCAT

QUERY

IDENTIFIER DESCRIPTION

ec_query (the command) Collect pertinent slave device
information

slave index Location of slave (starting from zero)

sync index Determine returned data

PDO index Location of PDO

Entry index Entry of EL (starting from zero)

DSPL variable number Starting the number at which object
data will be written to

Each of the arguments can be a constant or a DSPL variable. The indexes are

the same arguments used for the object query PARREAD RTC. DSPL

variable number specifies the starting DSPL variable number at which object

data will be written, where this is a one-based index. So, for example, a

DSPL variable number one specifies Var1 as the starting variable.

Slave index is its location (starting with zero). For example, EL1002 is 1,

EL2002 is 2, and EL3064 is 3.

If the Sync index is 255, the returned data is as follows:

DSPL variable number + 0: Slave vendor ID DSPL variable number + 1:

Slave product ID

If the Sync index is not 255, the returned data is as follows:

DSPL variable number + 0: Object index DSPL variable number + 1:

Object subindex DSPL variable number + 2: Object bit count If the slave

index or object index is invalid, all three DSPL variables will be unchanged.

Entry index is the entry of EL which has been queried. It starts from 0 (0

means first entry)

DSPL Basics

5-12

If any of the arguments are out of range for the device's object

dictionary, or the slave index is beyond the index of the last device on

the network, no DSPL variables will be changed. Therefore, prior to

running this command, the specified base DSPL variable should be

loaded with zero or some other value other than that which is expected

so that the success or failure of the command can be determined.

The structure is shown below:

ec_query(slave index, sync index, PDO index, entry index,
DSPL variable number)

In the following example:

ec_query(1,0,0,0,10)

This queries the EL1002 first entry. Since sync index is 0, the object
index is 10, object subindex is 11, and object bit count is 12.

 DSPL Basics

DSPL Programmer's Guide v5.311 5-13

EtherCAT MAPPING

IDENTIFIER DESCRIPTION

ec_map Map slave device objects to DSPL variable

slave index Location of slave (starting from zero)

object index Location of object

object subindex Location of object

object domain Specify which domain to use for this object

object function Specify whether the input is an input or output

object bit count How many bits within the domain

DSPL variable
number Specify which variable is mapped to object

Object index and subindex will be set to check the value that gets from query

function.

Object domain will be set to be 1, 2, or 3, which means read only, written

only, and read/written domain has been created. For now, at least, the read-

only and write-only domains are used only by Yaskawa drives, and the

read/write domain is used for all other devices.

Object function will be set to be 0 means it is an input module, while setting

object function to be 1 means it is an output module.

Object bit count will be set to check the value that gets from query function, it

should match the number of bits reported when the object's entry in the object

dictionary is queried.
DSPL variable number is the variable that has been mapped to slave object.

The instruction structure is shown below:

ec_map(slave index,

DSPL Basics

5-14

object index, object
subindex, object
domain, object
function, object bit
count, DSPL variable
number)

In the following example:

ec_map(1, 0x6000, 0x01, 3, 0, 1, 100)

This maps DSPL variable 100 to the second slave object (EL1002) at
index 6000h and subindex

1. The object will be mapped to the read/write domain, since object

domain is 3, and it will be an input from the device since object function

is 0. Additionally, this is a 1-bit slice, and the value will be shown in

var100. Since the Sync index is 0, object index should be variable 10 and

its value is 6000 in hexadecimal, which is 24576 in decimal, object

subindex should be variable 11 and its value is 1, and object bit count

should be variable 12 and its value is 1.

 DSPL Basics

DSPL Programmer's Guide v5.311 5-15

Enable EtherCAT Network

INDENTIFIER DESCRIPTION

ec_en Enable EtherCAT Network

In the following example:

ec_en()

The EtherCAT network will be established

DSPL Basics

5-16

Enable or Disable

Drives

INDENTIFIER DESCRIPTION

drive-on Turn on the selected drives
drive-off Turn off the selected drives

The selected motors that are controlled by Yaskawa Sigma7 will be turned on/off
example:

drive_on(0x3) (motors 1 and 2 will be turned on)
drive_off(0x7) (motors 1, 2 and 3 will be off)

The motor will turn on at axis 3 and turn off at axis 7.

 DSPL Basics

DSPL Programmer's Guide v5.311 5-17

DSPL Programmer’s Guide v5.311 6-1

6 DSPL Program
Development

DSPL Program Development

6-2

Note: This chapter assumes prior installation of the Mx4Pro
Development Tools v5.x (see the Mx4Pro Development Tools
manual, Chapters 2 and 3).

Click button to open DSPL Program Development Tool

The DSPL Program Development Tool allows you to create, modify, compile,
download, and execute DSPL programs. The DSPL Development Tool may be
opened by clicking on the DSPL button on the Mx4Pro Development Tools tool
bar. The following window will appear:

 DSPL Program Development

DSPL Programmer’s Guide v5.311 6-3

Fig. 6-1: DSPL Development Tool

The DSPL Development tool displays the name of the open DSPL File, the Path
for the open file, and the Status of a compile and/or download performed on the
file. The following sections describe how to utilize the different features of the
DSPL Development Tool.

Opening DSPL Files
Before a DSPL program can be edited, compiled, or downloaded, it must be
opened by the user. To open a DSPL program:

1. Open the DSPL Selection window. This can be achieved by selecting

Open... under the File menu or in the popup menu (right click in the DSPL
Development window). Double-clicking inside one of the three black areas
(File, Path, or Status text boxes) inside the DSPL Development window
(Figure 4-1) will also open the DSPL Selection window.

2. Select the DSPL File. To open a file, browse your hard drive to the path
where your project will exist or does exist, then click on the filename or
enter the file name in the File Name text box. Note, there is a File Type
filter. After your file has been selected, click on the OK button to accept
your selection or the Cancel button to disregard (Figure 6-2).

DSPL Program Development

6-4

Fig. 6-2: DSPL Selection window

Editing Files
After a file has been opened, it may be edited. This can be achieved by selecting
Edit under the File menu or in the popup menu. The opened file will then be
placed into a text editor. To select the editor used for editing the DSPL
programs, refer to Mx4Pro Development Tools “Selecting an Editor” in Chapter
12, Advanced Topics.
A file that has not been opened may also be edited via the DSPL Selection
window. Follow steps 1 and 2 above, then select the Edit button instead of the
OK button (Figure 6-2). The file will then be opened with the editor, but not into
the DSPL Development tool. This feature is useful when an “include” file needs
to be edited or created.

Compiling Files

An opened DSPL file can be compiled using the DSPL Development tool, but
make sure you save the file first, if it has been edited. To compile the DSPL file,
select Compile under the Build menu or in the popup menu. For example, by
selecting Compile from within the popup menu, the DSPL compiler will compile
the opened DSPL program (Figure 6-3).

 DSPL Program Development

DSPL Programmer’s Guide v5.311 6-5

Fig. 6-3 Compiling DSPL Program

After the compile has started, it may be canceled by selecting Cancel Compile
under the Build menu.

If the DSPL compiler detects any warnings or errors during the compilation of
the opened file, the Status box in the DSPL Development Tool will display a
warning/error message and an edit session displaying the warnings and/or errors
will appear.

Downloading Files
If the opened file has been compiled successfully, it can be downloaded to the
Mx4 card by selecting Download under the Build menu or in the popup menu.

The opened DSPL file may also be compiled and downloaded if Compile and
Download is selected under the Build menu or in the popup menu.

DSPL Program Development

6-6

Note: If Compile and Download was used and any warning(s)
and/or error(s) occurred, then the file will NOT be downloaded.
If only warnings were issued the file may still be downloaded, but
Download must be used instead of Compile and Download.

Executing DSPL Programs
There are several commands that may be issued to control the execution of a
downloaded DSPL program. The following commands may be issued to the Mx4
via the DSPL Development Tool by selecting the appropriate command under
the Run menu,

 Start DSPL - Starts the DSPL program execution
 Stop DSPL - Stops the DSPL program execution
 Signal DSPL - Signals the DSPL program, breaks out of a
 WAIT_UNTIL_RTC command in a DSPL program.
 AutoStart DSPL - Select AutoStart On or AutoStart Off to turn
 the autostart option on or off, respectively.

A DSPL program may also be started or stopped by selecting Start DSPL or
Stop DSPL, respectively, from within the popup menu. Furthermore, the
function keys F1 through F3 may be used to issue the Start DSPL (F1), Stop
DSPL (F2), and Signal DSPL (F3) commands when the DSPL Development
Window is active.

Refer to the Mx4 User’s Guide for more information on these commands.

Monitoring Execution of DSPL Program
The execution and run-time status of a DSPL program may be monitored by a
host computer. The line number of the PLC program and three motion programs
that are currently executing is available in the Mx4 Dual Port RAM DSPL
updates window (066h - 085h). DSPL run-time errors are reported to the Mx4
DPR DSPSTAT2 (009h) status register.

 DSPL Program Development

DSPL Programmer’s Guide v5.311 6-7

Closing the DSPL Development Tool
To close the Mx4Pro Development Tool, select Close under either the File menu
or in the popup menu. The opened DSPL file and path along with the window
dimensions and position are saved. When the window is started again the same
DSPL file will be opened and the window will appear in the same location as
when it was closed.

DSPL Programmer's Guide v5.311 7-1

7 Tutorial

Now that you have seen DSPL and the constructs, keywords, commands and
identifiers which make up DSPL application programs, you're ready to start your
own DSPL programming. The following tutorials illustrate different
functionalities of the DSPL language in working examples which may be
complied, downloaded, and executed with the Mx4pro DSPL Program
Development Tool (see chapter 6, DSPL Program Development). The
following tutorial DSPL files are located in the HLL folder and any referenced
data files are located in the DAT folder of the Mx4Pro install directory.

Session 1 Getting Started

As you know, every DSPL program needs a section entitled PLC_PROGRAM. The
PLC program includes calls to motion programs as well as Boolean operations
such as IF, WHILE, and WAIT_UNTIL. For example, in the following program the
only function which the PLC performs is starting the execution of the motion
program “my_first”. Immediately following the start of execution of the
"my_first" motion program, the PLC execution terminates as the end line
command is reached. The "my_first" execution continues, however, until the
end line command in the "my_first" motion program is reached.

plc_program:
 run_m_program (my_first)
end

my_first:
 pos_preset(1,0) ;set position of axis 1 to 0
 ctrl (1, 0, 2000, 1000, 1000) ;set control gains for axis 1
 axmove (1, 1, 20000, 5) ;move axis 1 to location 20000
end

Remember, this tutorial example program, tutor1.hll, as well as the examples
from sessions 2 through 11 are included with the Mx4 pro Development Tools
software.

The first line of motion program, “my_first”, clears any error, and presets the
axis 1 position counter to a value of 0. The next line contains the control gain

Tutorial

7-2

settings ki=0, kp=2000, kd=1000, and kf=1000 for axis 1. If the Mx4 controller
is already connected to your system, you must make sure that the control gains
have been optimally selected. The next line, AXMOVE, specifies acceleration,
target position, and traveling speed for a trapezoidal move. This simple program
simply presets the current position, closes the loop by setting control law
parameters, and moves axis 1 to position location 20000.

Session 2 Using Variables

In this session you will learn how to:

 Use variables as arguments in DSPL commands
 Use variables in mathematical expressions.

DSPL variables are used for real-time computation of system dynamics. The
arithmetic and geometric operators are used in conjunction with variables,
allowing application programs to compute motion parameters “on the fly”. The
following shows an example (tutor2a.hll) of a system in velocity mode.

plc_program
 run_m_program(var_speed)
end

var_speed:
 ctrl (1, 0, 2000, 1000, 1000) ;set control gains for axis 1
 maxacc(1,1) ;set maximum acceleration for
 ;axis 1 to 1 count/200usec^2
 pos_preset(1,0) ;preset position of axis 1
 var1 = 0
 while (var1 <= 1000)
 var2 = 0.01*var1
 var23 = sin(var2) ;compute a sinusoidal command
 velmode (1, var23) ;use var23 for axis 1 speed
 wend
end

The tutor2a.hll program runs axis 1 at a constant speed, as the var1 variable
value is not changed, and program calculations yield a constant value.

The same program may be modified to run axis 1 at a variable speed determined
by an arbitrary equation. In the following example (turor2b.hll) we use
trigonometric function SIN to change the speed sinusoidally.

Tutorial

DSPL Programmer's Guide v5.311 7-3

plc_program
 run_m_program(var_speed)
end

var_speed:
 ctrl (1, 0, 2000, 1000, 1000) ;set control gains for axis 1
 maxacc(1,1) ;set maximum acceleration for
 ;axis 1 to 1 count/200usec^2
 pos_preset(1,0) ;preset position of axis 1
 var1 = 0
 while (var1 <= 1000)
 var2 = 0.01*var1
 var23 = sin(var2) ;compute a sinusoidal command
 velmode (1, var23) ;use var23 for axis 1 speed
 var1 = var1 - 1 ;decrement var1
 wend
end

Session 3 Mathematical Functions

In this session you will learn about:

 Using DSPL arithmetic functions
 Using DSPL trigonometric functions

The arithmetic functions and mathematical operators are used in conjunction
with real-time computation of arguments used in DSPL instructions. The
following example describes how the trigonometric expression:

 1000 (1 - cos (2t/T))

is computed. Also, this example (tutor3.hll) shows how the results are saved in a
table array.

math:
 var2 = 0
 var10 = 0 ;var10 indexes through table
 var3 = 25 ;var3 holds the period in ms
 while (var10 <= var3) ;compute expression from 0 to T
 var4 = 2*pi
 var5 = var4/var3 ;compute 2/T
 var7 = var5 * var10 ;2t/T
 var8 = cos(var7)
 var9 = 1 - var9 ;1-cos(2**t/T))
 var9 = 1000*var9 ;1000*(1-cos(2**t/T))
 table_p(var10) = var9 ;save values in consecutive
 var10 = var10 + 1 ;table locations

Tutorial

7-4

 wend
ret()

The main program may access an element of the saved table array via a DSPL
line such as:

 var25 = table_p(3)

which simply reads location 3 of the table into var25. For more information on
arithmetic and trigonometric functions please refer to the command descriptions
for the following commands (chapter 8, DSPL Command Set):

 ARCTAN COS SIN
 SQRT TAN TABLE_P
 TABLE_V +, -, *, /

Session 4 Electronic Gearing

This tutorial illustrates the use of electronic gearing, as the following example
describes a packaging process that includes two conveyor belts. The upper belt
contains products which are equally positioned in between the logs. The master
motor moves the products and drops them into the bucket. The synchronization
between the belts requires gearing mechanism. The gear ratio in this example is
determined by the ratio of the space between the centers of the adjacent buckets
and the space between the products. The following program, (tutor4.hll) upon
setting a “start switch,” puts the system in electronic gearing and drives the
master axis at a constant speed of 4 counts/200 s. Upon pushing a “stop
switch,” the system terminates gearing and comes to a halt.

plc_program:
 run_m_program(simple_gear)
end

simple_gear:
 maxacc(0x3,1,1) ;set maximum acceleration for stop
 ctrl(0x3,0,1000,1000,1000,0,1000,1000,1000)
 ;set control gains for master and slave
 wait_until(inp1_reg & 0x0001)
 ;wait for “start” switch, Mx4 IN0
 gear(1,2,2) ;master axis is 1, slave axis is 2,
 ;and gear ratio is 2
 velmode(1,4) ;move master at constant speed of 4
 wait_until(inp1_reg & 0x0002)
 ;wait for the ‘stop’ switch
 stop(1) ;stop the master
 gear_off_acc(2) ;stop slave and disengage the gear

Tutorial

DSPL Programmer's Guide v5.311 7-5

end

As is the case with most DSPL commands, the arguments used in conjunction
with electronic gearing may be selected as DSPL variables.

Session 5 Cam Programming

In this session, through two examples you will learn how to:

 Fill the Mx4 memories with cam points (i.e. master/slave positions)
either off-line or on-line

 Write a DSPL program to perform camming

Example 1: Cam Program, Using Host to

Download Positions

Consider a table of 10 master/slave position points for x (master) and y (slave)
formed as follows:

Master Slave
 0 0
1000 200
1500 400
2000 600
2500 700
3000 800
3500 600
4000 400
4500 200
5000 0

This table can be saved in an ASCII data file (with .dat extension) under any
name (e.g. cam_tut5.dat). Using the Mx4pro cam table download utility, you
may download this file starting at any cam table index.

The following DSPL program will perform the cam function on axis 1 (the
master) and axis 2 (the slave).

Tutorial

7-6

plc_program:
 run_m_program (simple_cam)
end

simple_cam:
 ;**
 ;
 ; In this example, we assume that you have used
 ; the cam download utility included in Mx4pro, and
 ; have downloaded "cam_tut5.dat" which includes 10
 ; master/slave cam points into the Mx4 data memory
 ;
 ;**
 ctrl (0x3,0,1000,1000,1000,1000,10000,5000,3000)
 maxacc (0x3,1,1) ;set maximum accel
 pos_preset(0x3,0,0) ;preset xy positions
 velmode(1,5) ;run master in velocity mode
 cam(1,2,100,10) ;start cam function
end

Example 2: Cam Program, Using DSPL To

Generate the Cam Points in Real-Time

This is similar to example 1 with the exception that the cam points have been
defined (it is important to remember that they might have been computed) by the
DSPL program using the CAM_POINT command.

plc_program:
 run_m_program (simple_cam)
end

simple_cam:
 ;**
 ;
 ; In this example, 10 cam points specified
 ; by master and slave positions are defined by
 ; the DSPL and put in the Mx4 cam memory.
 ; Master is axis 1, slave is axis 2.
 ; Master starts in velocity mode. This is
 ; followed by running cam function
 ;
 ;**

Tutorial

DSPL Programmer's Guide v5.311 7-7

Session 6 Linear Moves

DSPL includes two forms of linear interpolated motion:

 Linear_move_s ;s-curve, acceleration
 linear_move ;constant acceleration

The linear motion commands are used in motions where the velocity connecting
point A to Point B is linear. The starting position/velocity (defining point A) are
those of an axis at the commencement of this command. The ending position
and velocity are the command’s arguments. The following example (tutor6a.hll)
will trace a square shape as illustrated below.

30000
B

A C

D

20000

10000 20000 30000 x

plc_program:
 run_m_program (square)
end_program

square:
 var23=1
 ctrl(0x3,0,1000,1000,1000,0,1000,1000,1000)
 ;set control gains for motor 1
 pos_preset(0x3,10000,20000) ;point A
 while(var23==1)

 linear_move(0x3,15000,5,25000,5) ;point AB/2
 linear_move(0x3,20000,0,30000,0) ;point B

 linear_move(0x3,25000,5,25000,-5) ;point BC/2
 linear_move(0x3,30000,0,20000,0) ;point C

 linear_move(0x3,25000,-5,15000,-5) ;point CD/2
 linear_move(0x3,20000,0,10000,0) ;point D

 linear_move(0x3,15000,-5,15000,5) ;point DA/2
 linear_move(0x3,10000,0,20000,0) ;point A

 wend
end

Tutorial

7-8

A slightly more involved linear move is one in which the velocity profile is an
“s-curve” (i.e. jerk is programmable). The following program (tutor6b.hll)
moves axes 1 and 2 in a coordinated move from the initial position (1000, 1000)
counts and velocity (0,0) counts/200 s to the target position (3000, 2500) and
velocity (0.8, 0.6).

plc_program
 run_m_program (line)
end_program

line:
 ctrl (0x3,0,1000,1000,1000,0,1000,1000,1000)
 ;set the gains
 pos_preset (0x3, 1000,1000) ;preset the pos command
 linear_move_s (0x3, 1000,0 30000, 0.8, 5000, 0.0003,
 1000,0,2500,0.6,5000,0.00022)
end

Session 7 Circular Moves

An example of a circular move can be generated by the following code:

plc_program
 run_m_program (circle_move)
end_program

circle_move:
 linear_move_s(0x3,1000,0,2500,0.8,5000,0.0003,1000,0,3000,0.6,
 5000,0.0003)
 circle(0x3,1500,-2000,2500,-3,0,0)
end

3000

500

A1000

2000

2500

1000 2000 3000 7000

B

4500

-2000

r = 2500

= 323 degrees


Axis 2 POS (counts)

Axis 1 POS (counts)

Tutorial

DSPL Programmer's Guide v5.311 7-9

The LINEAR_MOVE_S arguments used in this example are initial position and
velocity for x (1000,0), final position and velocity for x (3000, 0.8), time to
complete x motion (5000), x acceleration value during constant acceleration
segment (0.0003), initial position and velocity for y (1000, 0), final position and
velocity for y (2500, 0.6), time to complete y (5000), y acceleration.

The arguments for CIRCLE command are: the x-y values for its center (centx =
4500 - 3000 = 1500, centy = 500 - 2500 = -2000), radius (sqrt ((2000)2 +
(1500) 2) = 2500), vector speed (1.0), and target position for x and y
(x = 3000 - 3000 = 0, y = 2500 - 2500).

Session 8 Table-Based Cubic Spline

Consider a single axis move as illustrated. This trajectory is characterized by its
position at times starting at zero and incrementing every 100 ms. In order to
perform cubic spline contouring you must follow the steps as follows:

Step 1: Generate points

Step 2: Create an ASCII file that contains the points and download it to Mx4

Step 3: In your DSPL program use relevant instructions:

 CUBIC_RATE()
 CUBIC_SCALE()
 CUBIC_INT()

Tutorial

7-10

t(ms)

1000

pos x

40000

This example helps you understand how a data table is organized.

The Data File for One-Axis Contouring Process

You need to generate an ASCII file similar to the following and save it under any
name followed by .DAT, (e.g., CUB1.DAT).

Position (counts)

0.00000000000000e+000
1.25000000000000e+003
5.00000000000000e+003
1.00000000000000e+004
1.50000000000000e+004
2.00000000000000e+004
2.50000000000000e+004
3.00000000000000e+004
3.50000000000000e+004
3.87500000000000e+004
4.00000000000000e+004
3.87500000000000e+004
3.50000000000000e+004
3.00000000000000e+004
2.50000000000000e+004
2.00000000000000e+004
1.50000000000000e+004
1.00000000000000e+004
5.00000000000000e+003
1.25000000000000e+003
0.00000000000000e+000

You may now download all (21) points to the Mx4 memory.

Tutorial

DSPL Programmer's Guide v5.311 7-11

Memory Capacity

The Mx4 memory size dedicated to cubic spline is 8,192 words. Each point on
cubic spline contour is characterized by its (32-bit) position thus requiring two
words. Therefore, the total number of points that may be saved in an Mx4 cubic
spline table is 4096.

Downloading a Table

Use the Table download facility in Mx4pro v4 on Windows 95/NT. Click on
Tables|Cubic Spline|File|Open to find and select the file containing the table.
Use the Edit Table function to make changes to the file. Double click the Offset
box and type in the starting index of the table in the Mx4 table memory (this
allows multiple tables to be defined and used simultaneously). Click the
Download button to transmit the file to the Mx4 board. The number appearing
in the adjacent box is the number of points in the file.

DSPL Program

The steps following the transmission of the data table includes setting block
transfer rate (CUBIC_INT), scaling (CUBIC_SCALE) and, running through the
points (CUBIC_INT).

The following illustrates the DSPL program that runs through 21 points of
cub1.dat.

plc_program:
 run_m_program(cubic)
end

cubic:

 ctrl(0x1,1000,15000,5160,3140) ; set the gains
 pos_preset(0x1,0) ; preset x and y
 maxacc(0x1,1) ; set stop accel

 cubic_rate(500) ; set the cubic spline time

; interval to 100ms
 cubic_scale(0x1,1,0) ;set the position scale to 1

; with no shift
 cubic_int(21,0,1,0x1) ;run 21 points of the table

; only once
end

Tutorial

7-12

For Two Axes

This example is similar to the first one and is only modified for two axes. Our
objective here is to show how the data points for an additional axis must appear
in the data file.

x_pos

y_pos

v = -5.0e+004x

v = 5.0e+004x

v = -5.0e+004y v = 5.0e+004y

40,000

40,000

To simplify our presentation, we use similar motions for x and y. In a general
case x and y may have any arbitrary shape.

Tutorial

DSPL Programmer's Guide v5.311 7-13

ASCII File for Two-Axis Contouring Process

X Position (counts) Y Position (counts)
0.00000000000000e+000 0.00000000000000e+000
1.25000000000000e+003 1.25000000000000e+003
5.00000000000000e+003 5.00000000000000e+003
1.00000000000000e+004 1.00000000000000e+004
1.50000000000000e+004 1.50000000000000e+004
2.00000000000000e+004 2.00000000000000e+004
2.50000000000000e+004 2.50000000000000e+004
3.00000000000000e+004 3.00000000000000e+004
3.50000000000000e+004 3.50000000000000e+004
3.87500000000000e+004 3.87500000000000e+004
4.00000000000000e+004 4.00000000000000e+004
3.87500000000000e+004 3.87500000000000e+004
3.50000000000000e+004 3.50000000000000e+004
3.00000000000000e+004 3.00000000000000e+004
2.50000000000000e+004 2.50000000000000e+004
2.00000000000000e+004 2.00000000000000e+004
1.50000000000000e+004 1.50000000000000e+004
1.00000000000000e+004 1.00000000000000e+004
5.00000000000000e+003 5.00000000000000e+003
1.25000000000000e+003 1.25000000000000e+003
0.00000000000000e+000 0.00000000000000e+000

 Save this ASCII file as CUB2.DAT and download it to the Mx4 memory.

DSPL Program for Two-Axis Contouring

The following illustrates the DSPL program modified for two motors.

plc_program:

 run_m_program (cubic_spline)

end

cubic_spline:

 ; set the gains
 ctrl (0x3,1000,15000,5160,3140,1000,15000,5160,3140)

 ; preset x and y position
 pos_preset(0x3,0,0)

Tutorial

7-14

 ; set stop accel rate
 maxacc(0x3,1,1)

 ; set time interval
 cubic_rate(300)

 ; set scale for points
 cubic_scale(0x3,1,0,1,0)

 ; start interpolation
 cubic_int(42,0,0,0x3)
 end

Tutorial

DSPL Programmer's Guide v5.311 7-15

Session 9 ASCII Terminal Communication

With the Acc4 serial communication option, the Mx4 controller includes an
ASCII terminal serial interface which includes ASCII terminal commands as
well as ASCII DSPL commands.

The ASCII terminal commands enable the ASCII terminal user to both read and
write DSPL variables. The reading and writing of the 128 DSPL variables
(VAR1-VAR128) is done independently of the DSPL program execution. Variable
values can be queried during DSPL program execution to monitor state variables
or other program parameters of interest. Also, the ASCII terminal interface
allows users to set DSPL program parameters and control DSPL program flow
from the terminal by writing variable values which are utilized within the DSPL
program.

The ASCII DSPL commands allow an executing DSPL program to write values
and character strings to the ASCII terminal display as well as ‘input’ values sent
from the ASCII terminal to DSPL variables.

The Mx4 controller can communicate via two (2) different serial modes: ASCII
mode and Protocol mode. The Protocol mode is the ‘standard’ mode of
communication supported by Mx4 family utilities such as the Mx4pro
development tools. The Protocol mode supports faster data rates with multilayer
error detection and correction for industrial environments.

The ASCII mode of communication is, as the name implies, for users who would
like to use an ASCII terminal for some basic information passing to the Mx4
controller; that is, reading and writing DSPL variables.

Tutorial

7-16

ASCII Mode Terminal Commands

The ASCII mode of communication supports four (4) terminal commands,

EC0

 Echo Off. The EC0 command turns the echo mode off. The Mx4 upon

power-up or reset is in the EC0 or echo off mode.

EC1

 Echo On. The EC1 command turns the echo mode on. The Mx4 upon

power-up or reset is in the EC0 or echo off mode.

VARx?

 Read DSPL Variable. This command queries the specified DSPL

variable (x : 1 to 128). The value displayed is an integer with 3 implied
fractional digits. For example, 123456 is the value 123.456.

VARx=y

 Write DSPL Variable. This command writes the value y (-

2147000000<=y<=2147000000) to the specified DSPL variable (x : 1
to 128). The value written is an integer with 3 implied fractional
digits. For example VAR12=123456 will set VAR12 to 123.456.

ASCII Mode DSPL Commands

The ASCII mode of communication supports three (3) Mx4 DSPL commands,

 PRINT, PRINTS, AND INPUT

The PRINT command is used to write (send) a value to the ASCII terminal
display. The ASCII transmission to the terminal takes the format:

 (value) + <CR> + <LF> + ‘>’

The value displayed is an integer with 3 implied fractional digits. For example,
123456 is the value 123.456.

For example, to write the value 100.45 to the ASCII terminal:

Tutorial

DSPL Programmer's Guide v5.311 7-17

PRINT (100450)

To write the value contained in DSPL variable VAR128 to the ASCII terminal

 PRINT (VAR128)

The PRINTS command is used to write (send) a character string to the ASCII
terminal display. The ASCII transmission to the terminal takes the format:

 (string) + <CR> + <LF> + ‘>’

For example, write “hello world” to the ASCII terminal.

 PRINTS (“hello world”)

The INPUT command is used to write a value sent by the ASCII terminal to the
specified DSPL variable. The ASCII transmission to the terminal takes the
format:

 ‘??’

The DSPL motion program from which the INPUT command was executed will
halt (wait) program execution until the value is returned from the ASCII
terminal. The ASCII transmission from the terminal to the Mx4 must follow the
format:

 Inp=x

Where x may range from –2147000000 <= x <= 2147000000. The value written
is an integer with 3 implied fractional digits. For example, inp=123456 will set
the specified variable to 123.456.

For example, request ASCII input, assign to VAR15.

 INPUT (VAR15)

Tutorial

7-18

Session 10 Vector Control

In this session you will learn:

 Programming Vx4++ parameters with a #include file
 Reading Vx4++ state variables in a DSPL program

When using the Vx4++ option, the user must program current loop parameters in
addition to the position loop initializations and gains. As the number of
parameters which must be initialized grows, the user may wish to incorporate the
#include DSPL compiling option. With the #include feature, the user may link
in common routines such as initialization and/or emergency halting routines
which exist in separate DSPL .hll files.

The following DSPL program (tutor10.hll) utilizes the #include feature to link
in the file init10.hll. Included in the init.hll file is the initialization motion
program INIT_V4. The Mx4/Vx4++ initialization is performed with the
subroutine call to INIT_V4.

#include "init10.hll"
plc_program:
 run_m_program(test_v4)
end

test_v4:
 var1 = 0
 call(init_v4) ;init_v4 is in the #include file
 ;init.hll
 wait_until(var1 == 1) ;var1 is a flag to let the main
 ;program know it is done initializing
 viewvec (0x1, 3) ;specify that the axis 1 Vx4++ state
 ;variable is Ids feedback
 pos_preset (....) ;code as required by application
 axmove (....)
 etc., etc.

 if (vect4_par1 > 1250) ;the vect4_par1 is the state variable
 flux_current (0x1, 12) ;specified in the viewvec command ...
 endif ;Ids feedback

 .
 .
 .

end

Tutorial

DSPL Programmer's Guide v5.311 7-19

The init10.hll file contains the "init_v4" motion program which initializes the
system parameters,

init_v4:
 maxacc (0x1,1.9)
 ctrl (0x1,0,8632,912,560) ;initialize position loop gains (Mx4)
 pos_preset (0x1,0) ;initialize current loop parms.

 ;(Vx4++)
 motor_tech (0x1,brushless_dc) ;brushless DC
 motor_par (0x1,0) ;motor parameter is 0
 curr_limit (0x1,30) ;set current limit at 30%
 curr_offset (0x1,800) ;set offset to 800
 curr_pid (0x1,30000,0,3000) ;current loop pid gains
 encod_mag (0x1,1000,4,1) ;1000 lines, 4 poles, and comm 1
 flux_current (0x1,9) ;field command set to 9
 pwm_freq (0x1,15000) ;set pwm frequency to 15 khz

 var1=1
 ret()
end

You may have noticed that the above listed DSPL program includes a VIEWVEC
command call. The VIEWVEC is used (in a DSPL program) in conjunction with
the VECT4_PARx state variable identifiers. The VIEWVEC command specifies the
Vx4++ state variables which are represented by the DSPL VECT4_PARx
identifiers. In the example program, the axis 1 Vx4++ state variable is defined
as Ids feedback. Subsequent uses of the VECT4_PAR1 identifier throughout the
program are referencing the Ids feedback state variable. For example, note the
IF code in the example program which utilizes the VECT4_PAR1 identifier.

Tutorial

7-20

Session 11 Using Interrupts

In this section you will learn about:

 DSPL Interrupts, and
 How they are used, disabled, and cleared

The DSPL interrupts are used when an immediate reaction to an external event is
required. An example application is mark registration. In this application, the
motor position is corrected by the amount measured at the time of receiving an
interrupt. The external pulse which, for instance, is originated from an electronic
eye, must be hardwired to a Mx4 interrupt (e.g. EXT1). The instruction
EN_PROBE enables this interrupt.

A typical DSPL program (tutor11.hll) for this application is as follows:

plc_program:
 run_m_program(ptest)
end

ptest:
 ctrl(1,0,1000,1000,1000) ;set control gains
 pos_preset(1,0) ;preset the position of axis 1 to 0
 int_reg_all_clr() ;clear all interrupt registers
 en_probe(0x1) ;enable EXT1,stop when EXT1 is set
 velmode (1,3) ;run axis one at 3 c/200 
 wait_until(probe_reg & 0x1) ;wait for the probe

 ;i.e.EXT1)interrupt
 delay (10000) ;wait until the axis comes to stop
 var4 = probe_pos1 - pos1 ;find the difference between
 ;current pos and EXT1 position
 rel_axmove(1,1,var4,5) ;move the axis back to probe

 ;location at 5 c/200 s speed
 end

Similarly, you may use this technique in “homing” an axis where the reference
position is determined by the location of Index pulse.

Other interrupts which may be enabled in a DSPL program are:

 en_encflt encoder fault

en_err error exceeding a programmed value
 en_errhlt stop when error exceeds a programmed value
 en_index occurrence of index pulse
 en_motcp motion complete
 en_posbrk position break point

Tutorial

DSPL Programmer's Guide v5.311 7-21

Interrupts may be disabled or cleared by the commands:

 disabl_int disable interrupts
 disable2_int disable interrupts

int_reg_all_clr clear all interrupt registers
 int_reg_clr clear some interrupt registers

Interrupts such as:

en_index
en_posbrk

 en_probe

are immediately disabled after their first occurrence. The rest remain enforced
and can only be disabled by instructions DISABL_INT and DISABL2_INT.

Tutorial

7-22

Session 12 EtherCAT Network

In this session you will learn how to use the instructions ec_query, ec_map and
ec_en.

The Mx4pro v5.311, and later versions allow the use of query and map

instructions to put slave devices on the EtherCAT network. The following

example (inti_ec_network.hll) describes how these two instructions along with

ec_en work.

init_ec_ios:

ec_query(1,0,0,0, 1);
ec_map(1, var1, var2, 3, 0, var3, 100);

ec_query(2,0,0,0, 1);ec_map(2, var1, var2, 3, 1, var3, 101);

ec_query(3,0,0,0, 10);ec_map(3, var10, var11, 3, 0, var12, 102);

var10 = var10 +16

ec_map(3, var10, var11, 3, 0, var12, 103);

ec_en(); Ret() END

The example first queries the EL1002’s first entry and maps its two bits to

var 100. Then it queries the EL2002’s first entry and maps its two bits to

var 101. After that, it queries the EL 3064’ s first entry and maps its first

and second inputs to var 102 and var 103 respectively. Finally, it enables

the EtherCAT network.

Tutorial

DSPL Programmer's Guide v5.311 7-23

This page intentionally blank.

DSPL Programmer’s Guide v5.311 8-1

8 DSPL Command Set

Reference

ABS.. 8-14
ADC1, ADC2, ADC3, ADC4, ... 8-15
AND, OR .. 8-16
ARCTAN... 8-18
AXMOVE... 8-19
AXMOVE_S.. 8-21
AXMOVE_T.. 8-23
BTRATE... 8-25
CALL ... 8-27
CAM.. 8-28
CAM_OFF .. 8-31
CAM_OFF_ACC... 8-32
CAM_POINT ... 8-33
CAM_POS .. 8-35
CAM_PROBE ... 8-37
CAMCOUNT1, …, CAMCOUNT8 .. 8-39
CIRCLE... 8-40
COS.. 8-46
CPOS1, …, CPOS8 ... 8-47
CTRL ... 8-48
CTRL_KA .. 8-51
CUBIC_INT ... 8-52
CUBIC_RATE ... 8-54
CUBIC_SCALE... 8-58
CURR_LIMIT ... 8-59
CURR_OFFSET... 8-60
CURR_PID.. 8-61
CVEL1, …, CVEL8 ... 8-62
DDAC ... 8-63
DELAY ... 8-65
DISABL_INT ... 8-66
DISABL2_INT... 8-68

DSPL Command Set

8-2

DRIVE_OFF ... 8-71
DRIVE_ON.. 8-72
EC_MAP... 8-73
EC_QUERY.. 8-75
ELSE ... 8-70
EN_BUFBRK ... 8-71
EN_EC ... 8-80
ENCOD_MAG ... 8-81
ENDIF ... 8-83
EN_ENCFLT ... 8-84
EN_ERR... 8-86
EN_ERRHLT ... 8-88
EN_INDEX.. 8-90
EN_MOTCP.. 8-92
EN_POSBK.. 8-94
EN_PROBE.. 8-96
ERR1, …, ERR8 .. 8-98
ESTOP_ACC ... 8-99
ESTOP_REG ... 8-101
FERR_REG.. 8-101
FERRH_REG ... 8-101
FLUX_CURRENT .. 8-104
FRAC ... 8-106
GEAR ... 8-107
GEAR_OFF.. 8-108
GEAR_OFF_ACC .. 8-109
GEAR_POS.. 8-110
GEAR_PROBE ... 8-112
ICUBCOUNT ... 8-114
IF .. 8-115
INDEX_POS1, …, INDEX_POS8 8-118
INDEX_REG ... 8-93
INP1_REG, INP2_REG .. 8-119
INP_STATE ... 8-121
INPUT ... 8-123
INT.. 8-124
INT_HOST.. 8-125
INT_REG_ALL_CLR ... 8-126
INT_REG_CLR... 8-135
KILIMIT .. 8-137
LINEAR_MOVE... 8-139

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-3

LINEAR_MOVE_S .. 8-141
LINEAR_MOVE_T .. 8-148
LOW_PASS (option) .. 8-150
MAXACC... 8-153
MOTCP_REG ... 8-93
MOTOR_PAR ... 8-147
MOTOR_TECH ... 8-148
NOTCH (option) ... 8-149
OFFSET... 8-152
OFFSET_REG ... 8-93
OUTGAIN .. 8-154
OUTP_OFF.. 8-156
OUTP_ON .. 8-158
OVERRIDE.. 8-160
PI .. 8-161
POS1, …, POS8 .. 8-162
POSBRK_OUT ... 8-163
POSBRK_REG ... 8-93
POS_PRESET ... 8-168
POS_SHIFT ... 8-169
PRINT ... 8-170
PRINTS... 8-171
PROBE_POS1, …, PROBE_POS8 8-172
PROBE_REG .. 8-93
PWM_FREQ.. 8-173
REL_AXMOVE ... 8-174
REL_AXMOVE_S .. 8-175
REL_AXMOVE_SLAVE... 8-177
REL_AXMOVE_T .. 8-179
RESET ... 8-180
RET.. 8-182
RUN_M_PROGRAM .. 8-183
SIGN ... 8-184
SIN.. 8-185
SINE_OFF.. 8-186
SINE_ON .. 8-187
SQRT ... 8-188
START ... 8-189
STEPPER_ON ... 8-191
STOP ... 8-192
STOP_ALL_M_PROGRAM .. 8-194

DSPL Command Set

8-4

STOP_M_PROGRAM ... 8-195
SYNC ... 8-196
TABLE_OFF ... 8-198
TABLE_ON.. 8-199
TABLE_P, TABLE_V... 8-200
TABLE_SEL ... 8-202
TAN.. 8-203
TIMER, TIMER1, …, TIMER4.. 8-204
TIMER_RESET... 8-205
TRQ_LIMIT ... 8-206
VAR1, ..., VAR128 ... 8-207
VECCHG... 8-208
VECT4_PAR1, …, VECT4_PAR8 8-210
VX4_BLOCK ... 8-211
VEL1, …, VEL8 .. 8-212
VELMODE .. 8-213
VIEWVEC .. 8-214
WAIT_UNTIL ... 8-215
WAIT_UNTIL_RTC ... 8-217
WEND ... 8-218
WHILE ... 8-219
= .. 8-221
+ .. 8-223
- .. 8-225
* .. 8-227
/ .. 8-229
~ .. 8-231
& .. 8-233
<, >, <=, >=, ==, != ... 8-235

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-5

DSPL Command Summary

The Mx4 DSPL programming language includes many commands and
programming tools. DSPL consists of twelve major command categories. Each
category extends the power and flexibility of Mx4 in general areas of motion
control.

Fig. 8-1: DSPL Command Categories

DSPL Command Set

8-6

Control Law & Initialization
Control gains, system parameters, time, position, and velocity units all fall in this
category.

COMMAND DESCRIPTION
CTRL position, velocity loop control law parameters
CTRL_KA program an acceleration feed-forward gain
ESTOP_ACC specify emergency stop maximum acceleration
KILIMIT integral gain limit
MAXACC specify maximum acceleration
OFFSET amplifier offset cancellation
OUTGAIN position loop output gain
POS_PRESET preset position counters
POS_SHIFT position counter reference shift
RESET reset Mx4 controller card
STEPPER_ON select stepper / servo axes
SYNC define Mx4 master/slave status
TRQ_LIMIT specify a torque limit

Simple Motion
The instructions within this category control the torque, velocity, and position of
one or multiple axes with a trapezoidal profile. The commands in this category
may be classified as open and closed loop.

COMMAND DESCRIPTION
AXMOVE trapezoidal axis move
AXMOVE_S s-curve axis move
AXMOVE_T time based axis move
DDAC direct 18-bit DAC command (open loop)
REL_AXMOVE relative position axis move
REL_AXMOVE_S relative s-curve axis move
REL_AXMOVE_T time based relative axis move
STOP stops the motion
VELMODE velocity mode

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-7

PLC & Multi-Tasking
The commands in this category start or stop one or several motion control
programs (multi-tasking). These commands are used within the PLC program.

COMMAND DESCRIPTION
PLC_PROGRAM indicates start of PLC program
RUN_M_PROGRAM begin execution of specified program(s)
STOP_ALL_M_PROGRAM stop execution of all running motion programs
STOP_M_PROGRAM stop execution of specified motion program(s)

EtherCAT Network Commands
These commands are used to query, map and enable EtherCAT slave devices on
the network, so I/Os can be used by the DSPEtherCAT motion master.

COMMAND DESCRIPTION
EC_QUERY collect pertinent slave device information
EC_MAP map slave device objects to DSPL variable
EC_EN enable and start the EtherCAT network
DRIVE_ON / DRIVE_OFF turn on /off the selected EtherCAT drives on network

Program Flow Control
The Program Flow Control commands simplify the Mx4 DSPL program flow.
Commands within this category include: subroutine call, conditional branching,
and other logical instructions. These directives help simplify the development of
motion control programs.

COMMAND DESCRIPTION
CALL initiate execution of subroutine
DELAY halt program execution for specified time
ELSE else operand of if-else-endif structure
END indicates program end
ENDIF endif operand of if-else-endif structure
IF if operand of if-else-endif structure
RET return from subroutine
WAIT_UNTIL halt program execution based on condition
WAIT_UNTIL_RTC halt program execution until signaled by host
WEND wend operand of while-wend structure
WHILE while operand of while-wend structure

DSPL Command Set

8-8

Contouring
The Mx4 DSPL includes contouring commands for users who need to generate
arbitrary motion profiles. In these applications, a host computer generates
position and velocity data points for a complex contouring path in a periodic
basis. In CNC and robotics applications, motion trajectories may be computed in
real time. These trajectories are transmitted to Mx4 in blocks of position/velocity
points. The ring buffer area of Mx4's dual port RAM is the storage area for these
motion blocks. Mx4 performs high order interpolation on all these points and
executes the trajectory path on a point to point basis.

COMMAND DESCRIPTION
BTRATE block transfer rate
CUBIC_INT start the internal cubic spline table
CUBIC_RATE set cubic spline point transfer rate
CUBIC_SCALE scales position/velocities, also shifts positions
START start contouring motion
VECCHG contouring vector change

Motor, Power, Sensors and Drive
(available with Mx4/Vx4++, Octavia/Vx8++, and
Mx42Turbo only)

Mx4, Octavia, and Mx42Turbo, when equipped properly, can perform all of the
signal processing functions of servo amplifier control boards. Control
capabilities include commutation, current loops, field current, torque current,
current limiting, pulse-width modulation frequency, etc. When properly
equipped, these controllers are compatible with all power devices, industrial
motors, and a majority of sensors on the market.

COMMAND DESCRIPTION
CURR_LIMIT current limit setting
CURR_OFFSET current loop offset adjustment
CURR_PID program current loop control law parameters
ENCOD_MAG specify encoder lines, motor poles, comm. option
FLUX_CURRENT bipolar field flux value
MOTOR_PAR set the motor parameter

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-9

Motor, Power, Sensors and Drive (cont.)

COMMAND DESCRIPTION
MOTOR_TECH define the motor technology
PWM_FREQ set output PWM signal frequency
Vx4_BLOCK block further instructions to Vx4++
VIEWVEC specify Vx4++ parameters to view

Coordinated Motion - Gearing
Multi-axis motion control applications require synchronization of two or more
axes in a coordinated task. In addition to the electronic gearing master/slaving
technique, compensation tables also help users specify their own application
specific "slaving function".

COMMAND DESCRIPTION
GEAR unconditional 'electronic' gearing
GEAR_OFF disengage 'electronic' gearing
GEAR_OFF_ACC turns electronic gearing off and halt slave(s)
GEAR_POS 'electronic' gearing based on position value
GEAR_PROBE 'electronic' gearing based on external interrupt
REL_AXMOVE_SLAVE superimposes a relative axis move onto a slave engaged in gearing

Coordinated Motion - Cam
Multi-axis motion control applications require synchronization of two or more
axes in a coordinated task. A subset of table oriented master/slaving is known as
"electronic cam".

COMMAND DESCRIPTION
CAM turns electronic cam on
CAM_OFF turns only electronic cam off
CAM_OFF_ACC turns electronic cam off and halts slave(s)
CAM_POINT place CAM point into CAM table
CAM_POS turns electronic cam on at a specified position
CAM_PROBE turns electronic cam on after PROBE is set high

DSPL Command Set

8-10

Single & Multi-Dimensional Interpolation
The Mx4 DSPL offers a comprehensive set of linear and circular interpolation
commands. All interpolations work on single or multi-dimensional moves. For
example, a four-dimensional linear move transfers the system from any arbitrary
position, velocity point to another position, velocity point (both defined in multi-
dimensional space) with the specified acceleration and jerk. This powerful
command yields a well-controlled landing from one trajectory to another.

An example of such a move is rapid acceleration to a position at a specified feed
rate and turning to a new trajectory at the same feed rate. It is essential to
simultaneously control position, velocity, acceleration, and jerk trajectories in
applications like CNC, machine tool, and robotics. The Mx4 circular
interpolation command enables several circles to be cut simultaneously. In
addition, tables are provided for compensation for reversing error, friction,
machine non-linearities, or other forms of inherent mechanical inaccuracies.
Cubic splines are computed to interpolate between the intermediate points in a
motion segment. This interpolation provides the finest path between any two
points with no position, velocity, or acceleration discontinuity at segment
boundaries.

COMMAND DESCRIPTION
CIRCLE circular interpolation motion
LINEAR_MOVE constant accel linear motion
LINEAR_MOVE_S linear, s-curve motion
LINEAR_MOVE_T linear , simple time-based constant acceleration
OVERRIDE set feedrate override for LINEAR / CIRCLE
SINE_OFF disable sine tables for circular interpolation
SINE_ON enable sine tables for circular interpolation
TABLE_OFF disable circular interpolation compensation tables
TABLE_ON enable circular interpolation compensation tables
TABLE_SEL select a compensation table

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-11

Interrupt Control
The Mx4 DSPL includes a comprehensive set of instructions to handle
interrupts. There are many system conditions that require the host's and/or DSPL
program's immediate attention for an executive (or system-level) decision. Some
interrupts will be issued concurrently requiring immediate action by the Mx4.
The complete set of interrupts provided by Mx4 facilitates data reporting to the
host for issues of system level significance.

COMMAND DESCRIPTION
DISABL_INT disable the interrupts
DISABL2_INT disable the interrupts
EN_BUFBRK contouring buffer breakpoint interrupt enable
EN_ENCFLT encoder fault interrupt
EN_ERR following error interrupt enable
EN_ERRHLT following error / halt interrupt enable
EN_INDEX index pulse interrupt enable
EN_MOTCP motion complete interrupt enable
EN_POSBRK position breakpoint interrupt enable
EN_PROBE general purpose external probe interrupt enable
INT_HOST generate a host interrupt from DSPL program
INT_REG_ALL_CLR clear all interrupt bit registers
INT_REG_CLR clear specified interrupts in bit registers

ASCII Interface

COMMAND DESCRIPTION
INPUT receive valve from terminal value to terminal
PRINT send value to terminal
PRINTS send ASCII string to terminal

Filtering (optional)

COMMAND DESCRIPTION
LOW_PASS implement low pass filter at controller output
NOTCH implement notch filter at controller output

DSPL Command Set

8-12

DSPL Command Set

The DSPL command set includes commands, functions, operators, and
identifiers listed in alphabetical order. The command listing follows this format:

FUNCTION indicates the command function

EXECUTION indicates the amount of time this function will require to

execute under worst-case circumstances

SYNTAX proper command syntax 1

USAGE indicates the command usage as follows:
 Host host-programming command
 DSPL DSPL programming command

(PLC) command may be used in PLC programs
(Motion) command may be used in Motion programs

ARGUMENTS command arguments (if any) are defined

DESCRIPTION explanation of command operation, functionality

SEE ALSO listing of related commands

APPLICATION some helpful suggestions as to for which applications a

command may be useful

EXAMPLE an example illustrating the command in use

Note: Operators and Identifiers are labeled as such in the listing.

The syntax for many multi-axis commands includes an n argument that specifies
the command axes and the data arguments for each of the specified axes. For
example, the proper syntax for the following error interrupt command is,

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-13

EN_ERR (n,fer1, ... , fer8)

where ferx is the data argument for axis x. The data arguments follow n in a

lower to higher axis order. For example, a following error interrupt command
involving axes 2 and 4 would appear as,

EN_ERR(0xA,fer2,fer4)

The n argument is a hexadecimal bit coding following the format 0x? where ? is
the axis mask,

axis mask bit 0 axis 1
 bit 1 axis 2
 bit 2 axis 3
 bit 3 axis 4
 bit 4 axis 5
 bit 5 axis 6
 bit 6 axis 7
 bit 7 axis 8

For example, 0x3 bit codes axes 1 and 2; 0xE bit codes axes 2, 3, 4, etc.

DSPL Command Set

8-14

ABS

FUNCTION Calculate the Absolute Value of a Constant or a Variable
 Value.

EXECUTION 10 microseconds

SYNTAX ABS(valu) or -ABS(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant real number
 or a
 variable (VAR1 through VAR128)

DESCRIPTION

This mathematical function calculates the absolute value of a constant
or a variable value. If a minus sign appears to the left of the ABS
function, the result of the absolute value calculation is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR55 = ABS(VAR32)

SEE ALSO FRAC, INT, SIGN, SQRT

EXAMPLE

The first example calculates the absolute value of the value stored in
VAR36 and stores the negated result in VAR49:

 VAR49 = -ABS(VAR36)

The second example finds the absolute value of -6.751 and stores the
result (6.751) in VAR51:

 VAR51 = ABS(-6.751)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-15

ADC1, ADC2, ADC3, ADC4 IDENTIFIER

IDENTIFIER Analog-to-digital input values.

USAGE DSPL (PLC, Motion)

DESCRIPTION

If the Mx4 controller includes the Mx4 Quad ADC Acc4 option, four
(4) analog-to-digital (ADC) values are available in DSPL programs.
The value (in Volts) that is stored in each of the ADC values
corresponds to the voltage applied to the ADC input.

Name Description

ADC1 analog input 1
ADC2 analog input 2
ADC3 analog input 3
ADC4 analog input 4

SEE ALSO none

EXAMPLE

The ADC values can be used as follows:

 To assign the value of a variable:

VAR23 = ADC3

sets VAR23 to the value (in Volts) of the analog-to-digital input 3
voltage. For instance, applying -1.25 volts across the ADC3 input
would result in VAR23 being set to -1.25.

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR12 = ADC2 - 1.5

 as one of the arguments in a DSPL conditional expression:

 WHILE(ADC4 <= VAR33)

DSPL Command Set

8-16

AND, OR OPERATOR

OPERATOR Logical AND, Logical OR

SYNTAX (expression1) AND (expression2)

 (expression1) OR (expression2)

USAGE DSPL (PLC, Motion)

ARGUMENTS

expression1 A DSPL conditional expression

expression2 A DSPL conditional expression

DESCRIPTION

This operator performs the logical AND or the logical OR of two DSPL
conditional expressions. For the operator AND, the result is TRUE (1)
only if both of the conditional expressions evaluated as TRUE,
otherwise the result is FALSE (0). For the operator OR, the result is
FALSE (0), only if both of the conditional expressions evaluated as
FALSE (0), otherwise the result is TRUE (1).

Note: These operators can only be used in a DSPL conditional
statement inside of a DSPL conditional structure (i.e. IF,
WHILE, or WAIT_UNTIL). For example:

WHILE((INP1_REG & 0x09) AND (INP2_REG & 0x02))

SEE ALSO ~, &, IF, WHILE, WAIT_UNTIL

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-17

AND, OR cont. OPERATOR

EXAMPLE

The WAIT_UNTIL statement below will stop the execution of the DSPL
code as long as both of the following are true: the actual position of axis
1 is less than 1000, and the actual velocity of axis 2 is greater than the
value stored in VAR29:

 WAIT_UNTIL((POS1 < 1000) AND (VEL2 > VAR29))

The next WAIT_UNTIL statement will stop the execution of the DSPL
code as long as either of the following is true: the actual velocity of axis
2 is less than or equal to 2.5, or the actual position of axis 2 is greater
than the value stored in VAR9:

 WAIT_UNTIL((CVEL1 <= 2.5) OR (POS2 > VAR9))

DSPL Command Set

8-18

ARCTAN

FUNCTION Calculate the Arctangent of a Constant or a Variable Value.

EXECUTION 50 microseconds

SYNTAX ARCTAN(valu) or -ARCTAN(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant real number
 or a
 variable (VAR1 through VAR128)

DESCRIPTION

This mathematical function calculates the arctangent of a constant or a
variable value. The result will be in the range -/2 to /2. If valu is a
constant and a minus sign appears to the left of the ARCTAN function, the
result of the arctangent calculation is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR62 = -ARCTAN(83.33)

SEE ALSO COS, SIN, TAN

EXAMPLE

The first example calculates the arctangent of the value stored in VAR5
and stores the result in VAR14:

 VAR14 = ARCTAN(VAR5)

The second example finds the arctangent of -49.63 and stores the result
(-1.55064995) in VAR31:

 VAR31 = ARCTAN(-49.63)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-19

AXMOVE

FUNCTION Axis Move with Trapezoidal Trajectory

EXECUTION 200 microseconds

SYNTAX AXMOVE (n, acc1, pos1, vel1, ... , acc8, pos8, vel8)

USAGE DSPL (Motion), Host (command code: 60h)

ARGUMENTS

n bit coding of the specified axis(es)
accx unsigned value specifying the maximum halting

acceleration (deceleration) for axis x

 0  accx  1.999969 counts/(200s)2

posx target position for axis x

 -2147483648  posx  2147483647 counts

velx unsigned target velocity for axis x

 0  velx  255.99998 counts/200s

When used in DSPL, arguments accx, posx and velx may be selected as variables.

DESCRIPTION

The AXMOVE command allows for trapezoidal command generation with
specified endpoint position, slew rate velocity, and acceleration for
each axis. This command is suitable for linear moves.

SEE ALSO AXMOVE_S, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

DSPL Command Set

8-20

AXMOVE cont.

APPLICATION

This command can be used in almost any imaginable motion control
application. Applications may benefit from this command any time
there is a need for a linear move from point A to point B in a multi-
dimensional space. To name a few applications: pick and place robots
(e.g., in component insertion), rapid traverse (e.g., in machining), and
master/slaving (e.g., in paper processing and packaging) applications.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gain values
KILIMIT ()
AXMOVE () ;run system in axis move (linear trapezoidal) mode
:
EN_MOTCP () ;enable motion complete
 ;upon the completion of this (command) trajectory
 ;Mx4 generates motion complete interrupt

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 234567 and axis 2 to the target position
of -3000 counts. Let's also assume that we want this move to be
accomplished with the slew rate velocity of 4.0 counts/200µs for axis 1
and 3.50 counts/200µs for axis 2, and an acceleration of 0.005
counts/(200 µs)2 for both axes.

 AXMOVE (0x3,0.005,234567.0,0.005,-3000,3.50)

EXAMPLE 2

The user can issue a new axis move command before the motion of the
previous AXMOVE command is completed. For example, assume the
AXMOVE command of Example 1 is executed. Now, the DSPL Motion
program 'decides' to stop axis two at a new target position of -50000
counts with a new slew rate of 8.0 counts/200µs and a new acceleration
of 0.035 counts/(200s)2. While the AXMOVE of Example 1 is in
progress, the DSPL Motion program issues the new command.

AXMOVE (0x2,0.035,-50000,8.0)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-21

AXMOVE_S

FUNCTION S-Curve Axis Move with Trapezoidal Trajectory

EXECUTION 200 microseconds

SYNTAX AXMOVE_S (n, acc1, pos1, vel1, ... , acc8, pos8,

vel8)

USAGE DSPL (Motion), Host (command code: 82h)

ARGUMENTS

n bit coding of the specified axis(es)
accx unsigned value specifying the acceleration/deceleration

for axis x

 0  accx  1.999969 counts/(200s)2

posx target position for axis x

 -2147483648  posx  2147483647 counts

velx unsigned target velocity for axis x

 0  velx  255.99998 counts/200s

When used in DSPL, arguments accx, posx, and velx may be selected as
variables.

DESCRIPTION

The AXMOVE_S command allows for s-curve command generation with
specified endpoint position, slew rate velocity, and acceleration for
each axis. This command is suitable for linear moves where s-curve
acceleration is desired.

DSPL Command Set

8-22

AXMOVE_S cont.

accx

v

posx

t

velx

2*accx

AXMOVE

AXMOVE_S

The figure above illustrates the velocity profile of the AXMOVE_S
along with the linear velocity ramp of the AXMOVE command. With
AXMOVE_S, the acceleration will reach a value of 2*accx for a
maximum (see above figure).

SEE ALSO AXMOVE, AXMOVE_T, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

APPLICATION

Refer to DSPL Application Programs.

EXAMPLE 1

Assuming current positions of zero for axes 1 and 2, we want to move
axis 1 to the target position of 200000 counts and axis 2 to the target
position of -3000 counts. Let's also assume that we want this move to be
accomplished with the slew rate velocity of 4.0 counts/200 µs for axis 1
and 2.0 counts/200 µs for axis 2. Use an acceleration reference of 0.05

counts/(200 µs)2 for both axes.

 AXMOVE_S (0x3, .05, 200000, 4.0, .05, -3000, 2.0)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-23

AXMOVE_T

FUNCTION Time-Based Axis Move with Trapezoidal Trajectory

EXECUTION 200 microseconds

SYNTAX AXMOVE_T (n, acc1, pos1, tm1, ... , acc8, pos8, tm8)

USAGE DSPL (Motion), Host (command code: 8Fh)

ARGUMENTS

n bit coding of the specified axis(es)
accx unsigned value specifying the acceleration/deceleration

for axis x

 0  accx  1.999969 counts/(200s)2

posx target position for axis x

 -2147483648  posx  2147483647 counts

tmx motion time for axis x

 0  tmx  5000000 (200s)

When used in DSPL, arguments accx, posx, and tmx may be selected as
variables.

Note: The time argument, tmx, is an unsigned value with a unit of
200sec.

DESCRIPTION

The AXMOVE_T commands allow for trapezoidal command generation
with specified endpoint position, acceleration, and time to complete the
move for each axis. This command is suitable for linear moves where
endpoint position and motion time are the specifying parameters.

DSPL Command Set

8-24

AXMOVE_T cont.

The AXMOVE_T command is similar to AXMOVE, with the exception
that the velocity argument is replaced with a time argument.
AXMOVE_T will automatically calculate a suitable slew rate velocity to
achieve the programmed endpoint position in the programmed amount
of time, following a trapezoidal velocity profile (similar to AXMOVE).

SEE ALSO AXMOVE, AXMOVE_S, REL_AXMOVE, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

APPLICATION

Refer to DSPL Application Programs.

EXAMPLE

Move axis 1 to the target position of 10000 counts and axis 3 to the
target position of 3599 counts. Let's assume that we want this move to
be accomplished with the acceleration reference of 0.56 counts/(200

µs)2 and a time of 50msec (250*200sec) for both axes.

 AXMOVE_T (0x5, .56, 10000, 250, .56, 3599, 250)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-25

BTRATE

FUNCTION Set 2nd Order Contour Block Transfer Rate

EXECUTION 10 microseconds

SYNTAX BTRATE (m)

USAGE DSPL (Motion), Host (command code: 73h)

ARGUMENTS

m selects the block transfer rate for all of the axes.
 m is an integer ranged from 0 to 3

 m=0 block transfer rate is 5 ms per point
 m=1 block transfer rate is 10 ms per point
 m=2 block transfer rate is 15 ms per point
 m=3 block transfer rate is 20 ms per point

DESCRIPTION

This command sets the 2nd order contouring block transfer rate for the
system. For example, if the block transfer rate is set at 10 ms, the time
interval between each point in the ring buffer is '10 ms' (e.g., the DSP
will interpolate each point for 10 ms).

Note 1: The host should not adjust the block transfer rate when
contouring is in process.

Note 2: The default block transfer rate is set at 5 ms per point.

SEE ALSO CUBIC_RATE

DSPL Command Set

8-26

BTRATE cont.

APPLICATION

This command is useful in 2nd order contouring applications.
Depending on the capability of the host processor, position/velocity
points on multi-dimensional trajectories may be broken down to the
points that (timewise) may be near or far from each other. Clearly,
slower CPUs are capable of breaking down geometries to position and
velocity points that are widely spaced in time. This instruction makes
the time interval in between the two adjacent points (in contouring)
programmable. Please remember that regardless of the value
programmed for this time interval (5, 10, 15 or 20 ms), Mx4 will
internally perform a high-order interpolation of the points breaking
them down to 200 s.

Command Sequence Example
See EN_BUFBRK

EXAMPLE

Set a contouring interpolation interval of 10 ms.

 BTRATE (1)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-27

CALL

FUNCTION Subroutine Calls

EXECUTION 10 microseconds

SYNTAX CALL (program label)

USAGE DSPL (Motion)

ARGUMENTS

program label the name of the subroutine to be called

DESCRIPTION

This instruction is used to call a subroutine from a Motion program.
Program flow after a CALL instruction continues at the start of the
subroutine called. Program flow returns to the calling Motion program
after the RET instruction.

SEE ALSO RET

EXAMPLE

Call the subroutine "HALT_AX1".

 CALL (HALT_AX1)

DSPL Command Set

8-28

CAM

FUNCTION Engage Electronic Cam

EXECUTION 200 microseconds

SYNTAX CAM (n, m, tablestart1, tablesize1 ... ,

 tablestart8, tablesize8)

USAGE DSPL (Motion), Host (command code: A4h)

ARGUMENTS

n bit coding the ONLY master axis
m bit coding the slave axis(es)
tablestartx specifies cam table start index for slave axis x

 0 <= tablestartx <= 1600

tablesizex specifies cam table size for slave axis x

 3 <= tablesizex <= 1600

When used in DSPL, arguments tablestart and tablesize may be either
constants or DSPL variables.

DESCRIPTION

The commands making up the electronic cam feature are; CAM, CAM_OFF,

CAM_OFF_ACC, CAM_POINT, CAM_POS, and CAM_PROBE. DSPL keywords
[CAMCOUNT1-8, Mx4 Octavia] [CAMCOUNT1-4, Mx4] [CAMCOUNT1-2, Mx42].

The Mx4 controller is capable of storing up to 1600 cam points. Each cam point
consists of a master relative position, and an associated slave relative position.
A cam table can be between 3 and 1600 cam points long, and the user may
define any number of cam tables in the 1600-point cam table capacity. Cam
commands utilize tablestart and tablesize arguments to specify which ‘portion’ of
the 1600-point cam table region to ‘run’ on.

Cam table points may be downloaded in file format from within Mx4pro or built
from within DSPL using the CAM_POINT command. The CAM_POINT command
may also be used to modify cam points ‘on the fly’. The

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-29

CAM cont.

DSPL identifiers CAMCOUNT1,2,3,etc. indicate at which cam table indices the
slave axes(es) are ‘at’ (CAMCOUNT1 is for axis 1, etc.).

The cam points consist of relative position values for master and slave. The first
cam point in a table must be 0, 0. The last point in a cam table is the cycle
length for master and slave. For example, if the full cam cycle for a master axis
is 5000 counts and the slave would travel -1024 counts in that cycle, the last cam
point in that cam table would be 5000, -1024. Note that the master/slave
position ratios can not exceed the range [-256 to 255,999]. Also, the minimum
ratio is +/- 1/128. For example, for 1000 counts of the master axis, the slave
axis(es) can not have more than -256000 counts in the negative direction or
255999 counts in the positive direction.

The slave axes utilize the MAXACC acceleration value as the maximum
acceleration the slave axes can reach while following the electronic cam
trajectory, and therefore must be programmed before cam operation. This
command turns on the mechanical cam function for the selected master and
slave(s). The slave(s) follow the master according to the master/slave position
pairs stored in the cam table. The slave axis(es) utilize MAXACC as the maximum
acceleration they can achieve in following the master trajectory.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

SEE ALSO CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE,

MAXACC, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

DSPL Command Set

8-30

CAM cont.

EXAMPLE

Set axis 1 as the master axis, axes 2 and 3 as slaves. The axis 2 slave
will use the 10-point cam table beginning at index 0, while the axis 3
slave will use the 25 point cam table beginning at index 100.

 CAM(0x1,0x6,0,10,100,25)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-31

CAM_OFF

FUNCTION Turns Off, Disengages Cam Slave Axis(es)

EXECUTION 10 microseconds

SYNTAX CAM_OFF (n)

USAGE DSPL (Motion), Host (command code: A7h)

ARGUMENTS

n bit coding the slave axis(es) to be disengaged

DESCRIPTION

This command disengages the system that was under master slave
control.

SEE ALSO CAM, CAM_OFF_ACC, CAM_POINT, CAM_POS, CAM_PROBE,
SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Immediately disengage slave axes 3 and 4 from the master axis.

 CAM_OFF(0xc)

DSPL Command Set

8-32

CAM_OFF_ACC

FUNCTION Turns Off, Disengages Cam Slave Axis(es) With Acceleration

EXECUTION 50 microseconds

SYNTAX CAM_OFF_ACC (n)

RTC CODE DSPL (Motion), Host (command code: A8h)

ARGUMENTS

n bit coding the slave axis(es) to be disengaged

DESCRIPTION

This command disengages the system that was under master slave
control. The slave axis(es) will come to a stop at the maximum
acceleration rate programmed by MAXACC.

SEE ALSO CAM, CAM_OFF, CAM_POINT, CAM_POS, CAM_PROBE, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Disengage with acceleration profile slave axes 3 and 4 from the master
axis.

 CAM_OFF_ACC(0xc)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-33

CAM_POINT

FUNCTION Place Cam Point Into Cam Table

EXECUTION 200 microseconds

SYNTAX CAM_POINT (tablestart, tablesize, index, masterpos,
 slavepos)

USAGE DSPL (Motion), Host (command code: B3h)

ARGUMENTS

tablestart specifies cam table start index

 0 <= tablestart <= 1600

tablesize specifies cam table size

 3 <= tablesize <= 1600

index specifies index at which to place the cam point

 tablestart <= index <= (tablestart + tablesize-1)

masterpos cam point master axis relative position
slavepos cam point slave axis relative position

When used in DSPL, arguments tablestart, tablesize, index, masterpos,
and slavepos may be either constants or DSPL variables.

DESCRIPTION

The CAM_POINT allows the user to either build entire cam tables from
within the DSPL environment or alternatively, edit cam table points
(i.e.: change cam points ‘on the fly’). Cam table points consist of
master, slave position pairs, and cam tables can be anywhere from 3 to
1600 cam points long. The first point of a cam table (index = 0) must
be 0,0. The last point of a cam table (index = tablesize-1) is
mastercyclelength, slavecyclelength; where the cycle lengths for the
master and slave are the relative cam cycle lengths (i.e.: master cycle
length is 4096 counts, the slave cycle length is 1024 counts, for a full
cycle ratio of 4:1). Cam master/slave position ratios can not exceed the
range [-256 to 255,999]. Also, the minimum ratio is +/- 1/128.

DSPL Command Set

8-34

CAM_POINT cont.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POS, CAM_PROBE, SYNC

APPLICATION

See Application Notes.

EXAMPLE

A 10-point cam table exists at table start index 500. Replace the 3rd
point of the table with the master, slave point 1000, 3000.

CAM_POINT (500, 10, 2, 1000, 3000)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-35

CAM_POS

FUNCTION Turns Electronic Cam On at a Specified Position

EXECUTION 200 microseconds

SYNTAX CAM_POS (n, m, masterpos1, tablestart1,

 tablesize1 ,... , pos8, tablestart8, tablesize8)

USAGE DSPL (Motion), Host (command code: A5h)

ARGUMENTS

n bit coding the ONLY master axis
m bit coding the slave axis(es)
masterposx specifying the master position value for slave axis x that

the electronics cam engages
tablestartx specifies cam table start index for slave axis x

 0 <= tablestartx <= 1600

tablesizex specifies cam table size for slave axis x

 3 <= tablesizex <= 1600

When used in DSPL, arguments masterpos, tablestart and tablesize may
be either constants or DSPL variables.

DESCRIPTION

This command engages at the specified master position the mechanical
cam function for the selected master and slave(s). The slave(s) follow
the master according to the master/slave position pairs stored in the cam
table. The slave axis(es) utilizes MAXACC as the maximum acceleration
they can achieve in following the master trajectory.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

DSPL Command Set

8-36

CAM_POS cont.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_PROBE, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Set axis 4 as the master axis, axes 2 and 3 as slaves. The axis 2 slave
will use the 10-point cam table beginning at index 0, while the axis 3
slave will use the 25-point cam table beginning at index specified in
VAR8. Axis 2 slave should engage when the master axis is at position
1000, and axis 3 slave should engage when the master axis is at position
4096.

 CAM_POS(0x8,0x6,1000,0,10,4096,VAR8,25)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-37

CAM_PROBE

FUNCTION Turns Electronic Cam On After Probe Input

EXECUTION 200 microseconds

SYNTAX CAM_PROBE (n, m, q, tablestart1, tablesize1 ... ,

 tablestart8, tablesize8)

USAGE DSPL (Motion), Host (command code: A6h)

ARGUMENTS

n bit coding the ONLY master axis
m bit coding the slave axis(es)
q specifies the *EXTx probe interrupt to be used

 [Mx4]
 q=1 : *EXT1
 q=2 : *EXT2

 [Mx4 Octavia]
 q=1 : *EXT1
 q=2 : *EXT2
 q=4 : *EXT3
 q=8 : *EXT4

tablestartx specifies cam table start index for slave axis x

 0 <= tablestartx <= 1600

tablesizex specifies cam table size for slave axis x

 3 <= tablesizex <= 1600

When used in DSPL, arguments tablestart and tablesize may be either
constants or DSPL variables.

DSPL Command Set

8-38

CAM_PROBE cont.

DESCRIPTION

This command engages at the occurrence of the specified external
interrupt (*EXT1,2,3,4) the mechanical cam function for the
selected master and slave(s). The slave(s) follow the master according
to the master/slave position pairs stored in the cam table. The slave
axis(es) utilizes MAXACC as the maximum acceleration they can achieve
in following the master trajectory.

Note: Execution of the CAM_PROBE command will disable any
previously enabled EN_PROBE interrupt. Probe input (*EXT1,
*EXT2, *EXT3, or *EXT4) activation does not generate an
interrupt with the CAM_PROBE command.

Note: Activation of *ESTOP during cam operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in cam mode after the input-triggered halt.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POINT, CAM_POS, SYNC

APPLICATION

General master/slaving, in particular packaging, synchronous cutting,
flying shear, and mark registration, require the coordination of several
axes in cam fashion. For these applications, the user is required to load
the cam function along with the position spacing that defines the
distance between the adjacent gear ratios stored in the cam table.

EXAMPLE

Set axis 2 as the master axis, set axes 1 and 3 as slaves. The axis 1
slave will use the 100-point cam table beginning at index 0, while the
axis 3 slave will use the 250-point cam table beginning at index
specified in VAR38. Engage slave axes in cam at occurrence of *EXT2
interrupt.

 CAM(0x2,0x5,0x2,0,100,VAR38,250)

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-39

CAMCOUNT1, …, CAMCOUNT8 IDENTIFIER

IDENTIFIER Slave Axis Table Index Counter

USAGE DSPL (PLC, Motion)

DESCRIPTION

When engaged in CAM motion, the slave axis (es) derive their position
with respect to the master position from the master/slave position points
which make up the CAM table. The CAMCOUNTx identifiers indicate at
which CAM point the respective slave axis (es) is located within the
CAM table.

SEE ALSO
CAM, CAM_POINT, CAM_POS, CAM_PROBE, CAM_OFF, CAM_OFF_ACC

EXAMPLE

Delay DSPL program flow until the axis2 slave axis passes index 19 of
the CAM table.

WAIT_UNTIL (CAMCOUNT2 > 19)

DSPL Command Set

8-40

CIRCLE

FUNCTION Circular Trajectory Motion

EXECUTION Depends on size and feedrate of circle

SYNTAX CIRCLE (n, centx, centy, radius, feedrate, targetx,

 targety)

USAGE DSPL (Motion)

ARGUMENTS

n bit coding the two axes in circular motion
centx the circle center's x-axis position component relative to

the current x-axis command position

 -536870912 <= centx <= 536870912 counts

centy the circle center's y axis position component relative to the

current y-axis command position

 -536870912 <= centy <= 536870912 counts

radius positive value specifying circle radius

 radius <= 536870912 counts

feedrate circle feedrate (velocity), may be positive or negative

 -256 <= feedrate <= 255.99998 counts/200s

Note: circle period must be >2 seconds

targetx relative (x-axis component) distance of target from the

current x-axis command position

 -1073741824 <= targetx <= 1073741824 counts

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-41

CIRCLE cont.

targety relative (y-axis component) distance of target from the

current y-axis command position

 -1073741824 <= targety <= 1073741824 counts

When used in DSPL, arguments, centx, centy, radius, feedrate, targetx,

and targety may be either constants or DSPL variables.

DESCRIPTION

CIRCLE allows the user to program circular motion for two axes. In
order to perform the circular interpolation, the user has the option of
choosing which interpolation tables are used for the generation of the
command position and command velocity. The choices are:

1. Standard sine tables only
2. Sine tables plus user-defined position and velocity

compensation tables
3. User-defined position and velocity compensation tables only

The user-defined compensation tables allow the individual user to
compensate for both position and velocity non-linearities of the
particular system's mechanical parts.

Note: By selecting to use only the user-defined compensation tables,
the users may define their own interpolation scheme based on
the position and velocity compensation tables.

The command position and velocity profiles are illustrated in Figs. 8-2
and 8-3 for the standard sine table case. Fig. 8-2 depicts the profiles for
a positive feedrate while Fig. 8-3 illustrates the profiles for a negative
feedrate. It is important to note that with the addition of the
compensation tables, the position and velocity profiles of the following
figures would be altered.

DSPL Command Set

8-42

CIRCLE cont.

Y axis

X axis

C (180)

A (0)

B (90)

D (270)

X-Axis Component

Command
Position

Pn = radius x sin

Velocity

A

Vn = feedrate x cos

A

B

B

C

C

D

D

0 90 180 270

0 90 180 270

Degrees

Degrees

 Pn = radius x cos

Vn = -feedrate x sin

Y-Axis Component

Command
Position

Velocity

A

A

B

B

C

C

D

D

0 90 180 270

0 90 180 270

Degrees

Degrees





CommandCommand

Fig. 8-2: Profiles for Positive Feedrate

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-43

CIRCLE cont.

Y axis

X axis

C (180)

A (0)

B (90)

D (270)

X-Axis Component

Command
Position

Pn = radius x sin

Velocity

A

Vn = -feedrate x cos

A

B

C

C

D

0 90 180 270

B D
0 90 180 270

Degrees

Degrees

 Pn = radius x cos

Vn = feedrate x sin

Y-Axis Component

Command
Position

Velocity

A

A

B

B

C

C

D

D

0 90 180 270

0 90 180 270

Degrees

Degrees





CommandCommand

 Fig. 8-3: Profiles for a Negative Feedrate

DSPL Command Set

8-44

CIRCLE cont.

Upon execution of a CIRCLE or LINEAR related command, the DSPL
program flow will proceed to the following command. If the following
command is not a CIRCLE or LINEAR related command, it will be
executed immediately. If the following command is a CIRCLE or
LINEAR related command, it will be executed after the previous CIRCLE/
LINEAR motion is complete.

SEE ALSO CLEAR_POS_TABLE, CLEAR_VEL_TABLE, LINEAR_MOVE_,
LINEAR_MOVE_S, LINEAR_MOVE_T, LOAD_POS_TABLE,

LOAD_VEL_TABLE (Mx4 User’s Guide), SINE_OFF, SINE_ON,
TABLE_OFF, TABLE_ON

APPLICATION

See Application Notes

EXAMPLE

Move (axis one, axis two) from a current position of (6000, 0) to a final
position of (0, 6000) using circular interpolation with a feedrate equal
to 1.5 counts/200s. The radius of the circle is 6000 counts. Assume
standard sine table interpolation.

Note: The axis two velocity must be -1.5 counts/200s at the starting
point of the circle (see velocity profiles as illustrated in Fig. 5-
2 and 5-3).

 DSPL Command Set

DSPL Programmer’s Guide v5.311 8-45

CIRCLE cont.

Axis 2

Axis 1

(0,6000)

(6000,0)

n 0x3
centx -6000 counts

centy 0 counts

radius 6000 counts
feedrate 1.5 counts/200s
targetx -6000 counts

targety 6000 counts

 TABLE_OFF (0x3) ; Disable compensation tables
 SINE_ON (0x3) ; Enable standard sine tables
 CIRCLE (0x3, -6000, 0, 6000, 1.5, -6000, 6000)

DSPL Command Set

8-46

COS

FUNCTION Calculate the Cosine of a Constant or a Variable Value.

EXECUTION 75 microseconds

SYNTAX COS(valu) or -COS(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant
 or a
 variable (VAR1 through VAR128)

DESCRIPTION

This mathematical function calculates the cosine of a constant or a
variable value specified in radians. If valu is a constant and a minus
sign appears to the left of the COS function, the result of the cosine
calculation is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR19 = COS(4.963)

SEE ALSO ARCTAN, SIN, TAN

EXAMPLE

The first example calculates the cosine of the value stored in VAR23 and
stores the result in VAR42:

 VAR42 = COS(VAR23)

The second example finds the cosine of -0.529 radians and stores the
negated result (-0.863312172) in VAR8:

 VAR8 = -COS(-0.529)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-47

CPOS1, …, CPOS8 IDENTIFIER

IDENTIFIER Command Position State Variable

USAGE DSPL (PLC, Motion)

DESCRIPTION

A command position state variable holds a 32-bit two’s complement
integer value that represents the position (in encoder edge counts) that
DSPL is commanding the specified axis to reach.

Name Description

CPOS1 axis 1 command position
CPOS2 axis 2 command position
CPOS3 axis 3 command position
.
.
CPOS8 axis 8 command position

SEE ALSO ERR1, INDEX_POS1, POS1, PROBE_POS1, etc.

EXAMPLE

The command position state variables can be used as follows:

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR12 = CPOS3 + 33000

 as one of the arguments in a DSPL conditional expression:

 WAIT_UNTIL(CPOS1 > 100000)

DSPL Command Set

8-48

 CTRL

FUNCTION Control Law Parameters

EXECUTION 200 microseconds

SYNTAX CTRL (n, par11, ... , par14, ... , par81, ... ,
par84)

USAGE DSPL (Motion), Host (command code: 62h)

ARGUMENTS

n bit coding of the specified axis(es)
parx1 unsigned value for Ki gain
parx2 unsigned value for Kp gain
parx3 unsigned value for Kf gain
parx4 unsigned value for Kd gain

 0  parxy  32767

When used in DSPL, arguments parx1, parx2, parx3 and parx4 may be
selected as variables.

DESCRIPTION

This command performs a state feedback control algorithm combined
with a modified PID. The state feedback control algorithm includes an
observer which estimates the instantaneous values for speed and
acceleration. The feedback loops are then individually commanded to
provide a robust control, which is smooth and stable over a wide range
of servo operation. In addition, this algorithm performs a modified PID
with the saturation threshold set for integral action. A common PID
includes two zeros and one pole, which may not be suitable for systems
with noisy feedback. Also, the integral part of a common PID algorithm
may saturate the registers creating overshoots or other forms of
instability. A modified PID includes a second pole to solve the latter
problem and a programmable integral limit to solve the former one.

In the modified PID algorithm; par1, par2, par3, and par4 are values
representing the integral, proportional, velocity state feed forward, and
differential gains, respectively.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-49

CTRL cont.

Scaling Factors
The DSP uses an internal scaling factor for each gain. These factors
have been optimally selected for worst case numerical conditions.
These factors are:

GAIN SCALING FACTOR VALUE
Kf 1.525E-08 v/(c/s)

Kp 0.595E-06 v/c

Ki 3.308E-05 (v/s)/c

Kd 1.9875E-08 v/(c/s)

Output Loop Gain integer NA

v = volts, c = encoder edge counts, s = seconds

For example,

100 counts of position error and Kp of 1000 (other gains are zero) will
result in an output voltage of 59.5 millivolts.

 i.e. 100  1000  0.595E-06 = 59.5

V

K
K

P

n

d
i

n
_

+ +

+

+ +

_

Sampling Period

P ACTUAL

nV̂

K f

Kp

Kalman
Filter

to DAC

K Limiti

Output
Loop Gain

Block Diagram of Control Law

SEE ALSO KILIMIT, OFFSET, OUTGAIN

DSPL Command Set

8-50

CTRL cont.

APPLICATION

This command is used in all position/velocity control tuning
applications. For more information on the effectiveness of each gain on
system dynamic response, please refer to the Mx4Pro: Tuning Expert
manual. This manual will help you understand the significance of gains
in tuning. Please read this even if you cannot run Mx4Pro on your
machine because it lacks the DOS operating system.

Command Sequence Example
See AXMOVE and VELMODE

EXAMPLE

Set the following modified PID gain values for axes 2 and 4:

Ki = 100
Kp = 4000
Kf = 3000
Kd = 2500

Ki = 20
Kp = 8000
Kf = 5500
Kd = 7000

CTRL (0xA,100,4000,3000,2500,20,8000,5500,7000)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-51

CTRL_KA

FUNCTION Acceleration Feedforward Control Law Parameter

EXECUTION 200 microseconds

SYNTAX CTRL_KA (n, ka1, ... , ka8)

USAGE DSPL (Motion), Host (command code: 59h)

ARGUMENTS

n bit coding of the specified axis(es)
kax unsigned value for Ka gain

 0 <= kax <= 32767

When used in DSPL, the arguments kax may be selected as a variable.

DESCRIPTION

The CTRL_KA command allows the user to program an acceleration
feedforward gain for the specified axis(es).

SEE ALSO CTRL, KILIMIT, OFFSET, OUTGAIN

EXAMPLE

Program a Ka of 5000 for both axes 1 and 3.

 CTRL_KA (0x5, 5000, 5000)

DSPL Command Set

8-52

CUBIC_INT

FUNCTION Start the Internal Cubic Spline Contouring Execution

EXECUTION 100 microseconds

SYNTAX CUBIC_INT (n, si, m, q)

USAGE DSPL (Motion), Host (command code: B1h)

ARGUMENTS

n specifies the number of points in the cubic spline table to
run. Each point is characterized by the position and
velocity for only one motor. The maximum number of
points is 2,000.

si specifies the starting index in the table

m specifies the number of times m points of a spline table

will be looped over

 m  32767

q bit codes the axis(es) involved

When used in DSPL, arguments m, si, and n may be selected as
variables.

Note: m = 0 means run the specified number of points infinite

number of times.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-53

CUBIC_INT cont.

DESCRIPTION

This command starts execution of the points stored in the cubic spline
table immediately. It takes DSPL (or RTC) approximately 5 ms to
interpret this command. After interpretation of this command, DSPL
will move on to the next command line. The command sequence for this
instruction is as follows:

 1) CUBIC_RATE
 2) CUBIC_SCALE ;if necessary
 3) CUBIC_INT

We assume that user has already downloaded the table points to the
cubic spline table location.

Upon execution of a CUBIC_INT command, the DSPL program flow will
not proceed to a following CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE
command until the current CUBIC_INT motion is completed. If the
command following the CUBIC_INT command is not a CUBIC_INT,
CUBIC_RATE, or CUBIC_SCALE command, the DSPL program flow will
proceed to that command immediately after the CUBIC_INT command
execution.

SEE ALSO CLEAR_CUBIC (Mx4 User’s Guide), CUBIC_RATE,
CUBIC_SCALE, CUBIC_TSCALE

APPLICATION

Refer to Cubic Spline

EXAMPLE

Refer to Cubic Spline Application Notes.

DSPL Command Set

8-54

CUBIC_RATE

FUNCTION Set Cubic Spline Point Transfer Rate

EXECUTION 50 microseconds

SYNTAX CUBIC_RATE (m)

USAGE DSPL (Motion), Host (command code: A1h)

ARGUMENTS

m parameter coding the value for cubic spline transfer rate.
"m" codes the time interval between the adjacent
position/velocity points. Its value ranges between 5 and
511 and when divided by 5 it represents the interval in ms.
For example, m=5 represents the time interval of 1 ms and
m=25 is a 5 ms interval.

When used in DSPL, the argument m may be selected as a variable.

DESCRIPTION

This command sets the point transfer rate for the cubic spline. The
"transfer rate" sets the interval between two adjacent points in the ring
buffer. The two adjacent points can be spaced anywhere between 1.0 to
102.4 ms. Mx4's cubic spline interpolates between the two adjacent
points at 200 us increments. This means for example, Mx4 interpolates
500 points between two adjacent points 100 ms apart. Position and
velocity points in the ring buffer are organized similar to the way they
are in ordinary contouring. That is, every point is represented by eight
bytes - four for position and four for velocity.

Since velocity is numerically presented by a 25-bit two's complement
number (8 bits (absolute) integer, 16 bits fractional) the upper most
significant four bits of 32-bit long velocity are used to code the axes for
which the position/velocity points have been specified. For example,
the following 32-bit number, 30 55 66 77h specifies velocity value 0 55
66 77h in cubic spline interpolation involving axis 1 and axis 2 (i.e., 3 =
0011). Note that the 4-bit axis coding is only used in cubic spline -
ordinary contouring lacks this feature. Mx4's other contouring feature
(i.e., 2nd order) uses the VECCHG command to encode the axes involved
in a contouring task.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-55

CUBIC_RATE cont.

The contouring strategy can be switched between cubic spline and 2nd
order using CUBIC_RATE and BTRATE, respectively. It may take up to 500
ms to execute a CUBIC_RATE. Once a CUBIC_RATE is issued, there is no
need to re-issue this command.

The ring buffer breakpoint interrupt cannot detect less than 5 ms worth
of points. This imposes a constraint on the minimum number of points
for short block transfer rates such as 1 ms. For example, for a 1 ms
block transfer rate, a minimum of 5 points in the ring buffer is required.

buffer_break_point(m) m is number of pos/vel points in ring buffer
for b.t. rate of 1 ms 5  m  84 points
for b.t. rate of 5 ms 1  m  84 points

Upon execution of a CUBIC_INT command, the DSPL program flow will
not proceed to a following CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE
command until the current CUBIC_INT motion is completed. If the
command following the CUBIC_INT command is not a CUBIC_INT,
CUBIC_RATE, or CUBIC_SCALE command, the DSPL program flow will
proceed to that command immediately after the CUBIC_INT command
execution.

SEE ALSO EN_BUFBRK, BTRATE, CLEAR_CUBIC (Mx4 User’s Guide),
CUBIC_INT, CUBIC_SCALE

APPLICATION

Refer to Cubic Spline Application Notes.

DSPL Command Set

8-56

CUBIC_RATE cont.

16 points; b.t. rate = 80 ms

32 points; b.t. rate = 40 ms

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-57

CUBIC_RATE cont.

64 points; b.t. rate = 20 ms

128 points; b.t. rate = 10 ms

DSPL Command Set

8-58

CUBIC_SCALE

FUNCTION Scales Positions/Velocities, also Shifts Positions

EXECUTION 200 microseconds

SYNTAX CUBIC_SCALE (n, pv_multx, pos_shiftx, ...)

USAGE DSPL (Motion), Host (command code: B0h)

ARGUMENTS

n bit coding the axes involved

pv_multx position/velocity scaling multiplier for axis x

 -2  pos_multx < 2

pos_shiftx position shift for axis x. This is a 32-bit two’s

complement integer number that transfers the position to a
new origin.

When used in DSPL, the arguments pv_multx and pos_shiftx may be
selected as variables.

DESCRIPTION

This command scales those table points involved in a cubic spline
operation. This command also shifts the positions involved by a user
defined position shift value.

Upon execution of a CUBIC_INT command, the DSPL program flow will
not proceed to a following CUBIC_INT, CUBIC_RATE, or CUBIC_SCALE
command until the current CUBIC_INT motion is completed. If the
command following the CUBIC_INT command is not a CUBIC_INT,
CUBIC_RATE, or CUBIC_SCALE command, the DSPL program flow will
proceed to that command immediately after the CUBIC_INT command
execution.

SEE ALSO CLEAR_CUBIC (Mx4 User’s Guide), CUBIC_INT, CUBIC_RATE,
CUBIC_TSCALE

EXAMPLE

Refer to Cubic Spline Application Notes

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-59

CURR_LIMIT Vx4++ option
command

FUNCTION Set Output Drive Current Limit

EXECUTION 200 microseconds

SYNTAX CURR_LIMIT (n, clmt1, ... , clmt8)

USAGE DSPL (Motion), Host (command code: 77h)

ARGUMENTS

n bit coding of the specified axis(es)
clmtx unsigned value specifying the current limit percentage

 0  clmtx  100(%)

DESCRIPTION

This command sets the current limit for the axes specified. The current
limit is defined as a percentage of the maximum desired current (which
in turn is defined by the current feedback mechanism). In the case that
the current in any phase of a specified axis exceeds the set value, the
PWM signals for that axis will turn off for at least one full period and
turn on only if the sensed current is reduced below the current limit.

Note: Mx4 with Vx4++ will not execute the CURR_LIMIT command
if the VX4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

For current feedback designed for full scale at 10 amps, set current
limits of 3 and 4 amps for axes one and two, respectively.

(3/10) * 100% = 30% (4/10) * 100% = 40%

DSPL Command Set

8-60

CURR_LIMIT (0x3, 30, 40)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-61

CURR_OFFSET Vx4++ option command

FUNCTION Compensate Current Feedback Offset

EXECUTION 200 microseconds

SYNTAX CURR_OFFSET (n, val1, ... , val8)

USAGE DSPL (Motion), Host (command code: 85h)

ARGUMENTS

n bit coding of the specified axis(es)
valx offset value for axis x

 -32768  valx  32767

When used in DSPL, the argument valx may be selected as a variable.

DESCRIPTION

The CURR_OFFSET command allows the user to compensate for any
offset generated by the current feedback path.

Note: Mx4 with Vx4++ will not execute the CURR_OFFSET command
if the VX4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Program an offset compensation value of 2500 for axis one and -1500
for axis four.

CURR_OFFSET (0x9, 2500, -1500)

DSPL Command Set

8-62

CURR_PID Vx4++ option command

FUNCTION Current Loop Control Law Parameters

EXECUTION 200 microseconds

SYNTAX CURR_PID (n, par11, ... , par13, ..., par81, ... ,
 par83)

USAGE DSPL (Motion), Host (command code: 7Bh)

ARGUMENTS

n bit coding of the specified axis(es)
parx1 unsigned value for Kp gain
parx2 unsigned value for Ki gain
parx3 unsigned value for Kd gain

 0  parx1,2,3  32767

DESCRIPTION

This command performs a vector control algorithm combined with a
modified PID.

SEE ALSO CTRL

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Set the following modified current loop PID gain values for axis three.

Kp = 10000
Ki = 20
Kd = 9500

CURR_PID (0x4, 10000, 20, 9500)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-63

CVEL1, ..., CVEL8 IDENTIFIER

IDENTIFIER Command Velocity State Variable

USAGE DSPL (PLC, Motion)

DESCRIPTION

A command velocity state variable holds a 25-bit two’s complement
value (sign extended to 32 bits, the least significant 16 bits represent the
fractional portion of the value) that represents the velocity (in encoder
edge counts/200s) that DSPL is commanding the specified axis to
reach. For example:

CVEL1 = 000A8000h = 10.5 counts/200s

Name Description

CVEL1 axis 1 command velocity
CVEL2 axis 2 command velocity
CVELx axis x command velocity
.
.
CVEL8 axis 8 command velocity

SEE ALSO VEL1

EXAMPLE

The command velocity state variables can be used as follows:

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR12 = CVEL2 + 0.5

 as one of the arguments in a DSPL conditional expression:

 WAIT_UNTIL(CVEL1 > 1.5)

DSPL Command Set

8-64

DDAC

FUNCTION Direct DAC Output

EXECUTION 200 microseconds

SYNTAX DDAC (n, val1, ... , val8)

USAGE DSPL (Motion), Host (command code: 63h)

ARGUMENTS

n bit coding for the specified axis(es)
valx DAC output voltage for axis x

 -10.0  valx  9.9997 volts

When used in DSPL, the argument valx may be selected as a variable.

DESCRIPTION

The DDAC command places the axis(es) in open loop, with DAC(x)
output voltage determined by the valx command argument. DDAC

specifies a bipolar analog signal ranging from -10 to +10 volts with a
resolution of approximately 0.3 millivolts.

After execution of a DDAC command, in order to return the axis(es) to
closed loop operation, a closed-loop command such as AXMOVE or
VELMODE must be executed. The following procedure serves as an
example:

 1. slow or halt the axis(es) motion:
 -execute DDAC with 0v specified

 2. minimize built-up following error:
 -execute POS_PRESET command

 3. return axis(es) to closed loop:
 -execute AXMOVE command with target position
 specified as that used in the preceding
 POS_PRESET command.

SEE ALSO none

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-65

DDAC cont.

APPLICATION

This command can be used in applications where the voltage command
provides adequate control. Voltage commands can be applied to a
torque loop (for torque control applications in robotics) or a velocity
loop (to a spindle axis in machine tool applications).

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Output +3.75 volts to the axis 4 DAC.

 DDAC (0x8,3.75)

DSPL Command Set

8-66

DELAY

FUNCTION Program Flow Delay

EXECUTION Depends on user arguments

SYNTAX DELAY (del)

USAGE DSPL (Motion)

ARGUMENTS

del value specifying the number of 200s intervals to delay

 0  del  65535 (200s intervals)

When used in DSPL, the argument del may be selected as a variable.

DESCRIPTION

DSPL Motion program flow stops at the DELAY command for the
specified amount of time.

SEE ALSO WAIT_UNTIL

APPLICATION

See Application Notes

EXAMPLE

Set a delay of 0.400 seconds.

0.400 / (200 e-006) = 2000

 DELAY (2000)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-67

DISABL_INT

FUNCTION Disable Interrupts

EXECUTION 10 microseconds

SYNTAX DISABL_INT (n, m1, ... , m8)

USAGE DSPL (Motion), Host (command code: 64h)

ARGUMENTS

n bit coding of the specified axis(es)
mx bit coding of the interrupts to disable for axis x (setting a

bit to 1 indicates disabling an interrupt)

bit 7 : not used
bit 6 : motion complete
bit 5 : index
bit 4 : probe
bit 3 : position breakpoint
bit 2 : following error
bit 1 : following error / halt
bit 0 : buffer breakpoint

DESCRIPTION

This command disables some or all of the servo control card interrupts.

SEE ALSO DISABLE2_INT, EN_BUFBRK, EN_PROBE, EN_ERR,
EN_ERRHLT, EN_INDEX, EN_MOTCP, EN_POSBRK

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also, a few
enabled interrupts may have to be disabled based on external events.

Command Sequence Example
No preparation is required before running this instruction.

DSPL Command Set

8-68

DISABL_INT cont.

EXAMPLE

Disable the previously enabled axis 1 following error and axis 3 index
pulse interrupts.

 DISABL_INT (0x5,0x04,0x20)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-69

DISABL2_INT

FUNCTION Disable Interrupts

EXECUTION 10 microseconds

SYNTAX DISABL2_INT (n, m1, ... , m8)

USAGE DSPL (Motion), Host (command code: 5Ah)

ARGUMENTS

n bit coding of the specified axis(es)
mx bit coding of the interrupts to disable for axis x (setting a

bit to 1 indicates disabling an interrupt)

bit 7 : not used
bit 6 : not used
bit 5 : not used
bit 4 : not used
bit 3 : not used
bit 2 : not used
bit 1 : not used
bit 0 : encoder fault [EN_ENCFLT]

DESCRIPTION

This command disables the selected enabled interrupts.

SEE ALSO DISABL_INT, EN_ENCFLT

APPLICATION

This command may be used in conjunction with all applications in
which only a few interrupts are needed to be enabled. Also, a few
enabled interrupts may have to be disabled based on external events.

Command Sequence Example

No preparation is required before running this instruction.

DSPL Command Set

8-70

DISABL2_INT cont.

EXAMPLE

Disable the previously enabled axis 1, axis 3, and axis 4 encoder fault
[EN_ENCFLT] interrupts.

 DISABL2_INT (0xd, 0x01, 0x01, 0x01)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-71

DRIVE_OFF

FUNCTION Turns the selected Yaskawa Sigma7 drives off (they get

disabled)

EXECUTION 1 millisecond

SYNTAX drive_off(n)

USAGE DSPL (network) Host (command code C1h)

ARGUMENTS n bit coding the specified axis(ex)

DESCRIPTION

The motors which are controlled by Yaskawa Sigma7 drives will be turned off or
disabled.

In the following example:

drive_off(0x7)

The first, second and third drives will be disabled.

DSPL Command Set

8-72

DRIVE_ON

FUNCTION Turns the selected Yaskawa Sigma7 drives on

EXECUTION 1 millisecond

SYNTAX drive_on(n)

USAGE DSPL (network) Host (command code C0h)

ARGUMENTS n bit coding the specified axis(ex)

DESCRIPTION

The motors which are controlled by Yaskawa Sigma7 drives will be turned on.

In the following example:

drive_on(0x3)

The first and second drives will be enabled.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-73

EC_MAP

FUNCTION map slave device objects to DSPL variable

EXECUTION 1 millisecond

SYNTAX ec_map(slave index,object index, object subindex,
object domain, object function, object bit count,
DSPL variable number)

USAGE DSPL (NETWORK)

ARGUMENTS

slave index location of index (starting from zero)
object index location of object
object subindex subindex location of object
object domain specify which domain to use for this object
object function specify whether it is an input or an output

 object bit count how many bits within the domain

 DSPL variable number specify which variable is mapped to object

DESCRIPTION

Object index and subindex will be set to check the value that it gets from query

function.

Object domain will be set to be 1, 2, or 3, which means read only, written only,

and read/written domain has been created. For now, at least, the read-only and

write-only domains are used only by Yaskawa drives, and the read/write

domain is used for all other devices. Object function will be set to be 0 means

it is an input module, while setting object function to be 1 means it is an output

module.

Object bit count will be set to check the value that gets from query function, it

should match the number of bits reported when the object's entry in the object

dictionary is queried.
DSPL variable number is the variable that has been mapped to slave object.

The instruction structure

DSPL Command Set

8-74

is shown below:

ec_map(slave index,

object index, object

subindex, object

domain, object

function, object bit

count, DSPL variable

number)

In the following example:

ec_map(1, 0x6000, 0x01, 3, 0, 1, 100)

This maps DSPL variable 100 to the second slave object (EL1002) at index
6000h and subindex

1. The object will be mapped to the read/write domain, since object domain is 3,

and it will be an input from the device since object function is 0. Additionally,

this is a 1-bit slice, and the value will be shown in var100. Since the Sync index

is 0, object index should be variable 10 and its value is 6000 in hexadecimal,

which is 24576 in decimal, object subindex should be variable 11 and its value is

1, and object bit count should be variable 12 and its value is 1.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-75

EC_QUERY

FUNCTION Collect pertinent slave device information

EXECUTION 1 millisecond

SYNTAX ec_query(slave index,sync index, PDO index, entry
index, DSPL variable #)

USAGE DSPL (NETWORK)

ARGUMENTS

slave index location of index (starting from zero)
sync index determine return data
PDO index location of PDO
entry index entry of EL (starting from zero)
dspl var # starting the number which object data will be written

DESCRIPTION

Each of the arguments can be a constant or a DSPL variable. The indexes are the

same arguments used for the object query PARREAD RTC. DSPL variable

number specifies the starting DSPL variable number at which object data will be

written, where this is a one-based index. So, for example, a DSPL variable

number one specifies var1 as the starting variable.

Slave index is its location (starting with zero). For example, EL1002 is 1,

EL2002 is 2, and EL3064 is 3.

If the Sync index is 255, the returned data is as follows:

DSPL variable number + 0: Slave vendor ID; and

the DSPL variable number + 1: Slave product ID

If the Sync index is not 255, the returned data is as follows:

DSPL variable number + 0: Object index DSPL variable number + 1: Object
subindex DSPL

DSPL Command Set

8-76

EC_QUERY (continued)

variable number + 2: Object bit count If the slave index or
object index is invalid, all three DSPL variables will be
unchanged. Entry index is the entry of EL which has been
queried. It starts from 0 (0 means first entry)

If any of the arguments are out of range for the device's object
dictionary, or the slave
index is beyond the index of the last device on the network, no
DSPL variables will be changed. Therefore, prior to running
this command, the specified base DSPL variable should be
loaded with zero or some other value other than that which is
expected so that the success or failure of the command can be
determined.

The structure shown below

ec_query(slave index, sync index, PDO index, entry index,
DSPL variable number)

In the following example:

ec_query(1,0,0,0,10)

This queries the EL1002 first entry. Since sync index is 0, the object index is 10,
object subindex is 11, and object bit count is 12.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-77

ELSE

FUNCTION Else Condition in IF-(then)-(ELSE)-ENDIF Structure

EXECUTION 10 microseconds

SYNTAX IF (conditional expression)
 program code to execute if the IF condition is True
ELSE
 program code to execute if the IF condition is False
ENDIF

USAGE DSPL (PLC, Motion)

ARGUMENTS

none

DESCRIPTION

The IF-(then)-ELSE structure is used for conditional program
execution. The ELSE operand allows selective program execution as a
result of a False IF conditional expression.

SEE ALSO IF, ENDIF

APPLICATION

See Application Notes

EXAMPLE

Preset the position of axis one to 100 counts if the command position of
axis two is > 1000 counts; otherwise preset the position of axis one to
200 counts.

 IF (CPOS2 > 1000)
 POS_PRESET (0x1,100)
 ELSE
 POS_PRESET (0x1,200)
 ENDIF

DSPL Command Set

8-78

EN_BUFBRK

FUNCTION Enable Buffer Breakpoint Interrupt

EXECUTION 10 microseconds

SYNTAX EN_BUFBRK (buffbrk)

USAGE DSPL (Motion), Host (command code: 61h)

ARGUMENTS

buffbrk a positive value which represents the delta position for the
remaining number of bytes in the ring buffer. Since each
contouring point requires 8 bytes, this number must be
multiplied by 8 to indicate the real number of bytes left in
the ring buffer.

 1  buffbrk  84 contouring data points

DESCRIPTION

This command will cause an interrupt when the number of contouring
data points in the contouring ring buffer falls below a preset breakpoint.
The buffer breakpoint interrupt status will appear in bit 0 of the DPR
interrupt flag location [Mx4:7FEh] [Mx4 Octavia:1FFEh]. This bit gets
set if a buffer breakpoint interrupt occurs.

SEE ALSO DISABL_INT

APPLICATION

This command must be used in both 2nd order and cubic spline
contouring applications. To maintain continuity in a contouring
application, Mx4 must be constantly updated by the host processor with
a set of new (position/velocity) points on the contour. Since no
application can afford to run out of points, the host must set the buffer
breakpoint interrupt to a value such that running the remaining points
(what is left in the ring buffer) will give the host enough time to update
the buffer. For slower hosts, the argument for this command must be
relatively larger.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-79

EN_BUFBRK cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
. ;load the ring buffer with contouring points,
. ;(position and speed)
BTRATE () ;set the 2nd order contouring block transfer rate to 5,

10, 15 or 20 ms
EN_BUFBRK () ;set the breakpoint in buffer
.
.
START (n) ;start contouring

EXAMPLE

Enable a contouring ring buffers breakpoint interrupts for the case that
the number of segment move commands in the ring buffer falls below
30.

 EN_BUFBRK (30)

DSPL Command Set

8-80

EN_EC

FUNCTION Enables EtherCAT Network

EXECUTION 1 millisecond

SYNTAX en_ec()

USAGE DSPL (NETWORK)

ARGUMENTS

 None

DESCRIPTION

In the following example:

ec_en()

EtherCAT
communication will be
established

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-81

ENCOD_MAG Vx4++ option command

FUNCTION Define Encoder Line Count, Motor Poles, Commut. Option

EXECUTION 200 microseconds

SYNTAX ENCOD_MAG (n, p11, p21, p31, ... , p14, p24, p34)

USAGE DSPL (Motion), Host (command code: 80h)

ARGUMENTS

n bit coding of the specified axis(es)
p1x number of encoder lines/rev on axis x

 0  p1x  65535

p2x number of motor poles on axis x

 0  p2x  256

p3x brushless DC commutation option

 p3x = 0 : brushtype DC or AC induction motor tech
 p3x = 0 : comm option 0
 p3x = 1 : comm option 1

DESCRIPTION

The Vx4++ option card interfaces to the motors with any number of
magnetic poles and encoders with any number of encoder pulse
numbers. An example of this is a brushless DC machine with eight
poles, a 1,000 line encoder, and hall sensors mounted in a special
configuration. This command allows the user to define the encoder,
commutation, and motor pole parameters for the specified axis(es).

Note: Mx4 with Vx4++ will not execute the ENCOD_MAG command if
the VX4_BLOCK command is active for the axes in question.

SEE ALSO VX4_BLOCK

DSPL Command Set

8-82

ENCOD_MAG cont.

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Axis four is an AC induction motor with a 1024 line encoder and 4
motor poles.

ENCOD_MAG (0x8, 1024, 4, 0)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-83

ENDIF

FUNCTION Designates End Of IF-(then)-(ELSE)-ENDIF Structure

EXECUTION 10 microseconds

SYNTAX IF (conditional expression)
 program code to execute if the IF condition is True
ELSE
 program code to execute if the IF condition is
False
ENDIF

USAGE DSPL (PLC, Motion)

ARGUMENTS

none

DESCRIPTION

The IF-(then)-ELSE structure is used for conditional program
execution. ENDIF designates the last line of the IF-(then)-ELSE
structure. An ENDIF statement must be included with every IF
statement.

SEE ALSO IF, ELSE

APPLICATION

See Application Notes

EXAMPLE

Preset the position of axis one to 100 if VAR1 is equal to 0. If VAR1 is
not equal to 0 and VAR2 is equal to 1, preset the axis one position to
200.

 IF (VAR1 == 0)
 POS_PRESET (0x1,100)
 ELSE
 IF (VAR2 == 1)
 POS_PRESET (0x1,200)
 ENDIF
 ENDIF

DSPL Command Set

8-84

EN_ENCFLT

FUNCTION Encoder Fault Interrupt

EXECUTION 50 microseconds

SYNTAX EN_ENCFLT (m, n, fer1, ... , fer8)

USAGE DSPL (Motion), Host (command code: 58h)

ARGUMENTS

m bit coding of the axes interrupt condition (see Description)
n bit coding of the specified axis(es)
ferx unsigned following error value for axis x

 0 <= ferx <= 65535 counts

DESCRIPTION

This command enables the encoder fault interrupt for the specified axes.

With the respective axis bit of argument m equal to 0, the encoder fault
interrupt is triggered for the axis in question if,

 1. abs[following error] > ferrx threshold, and
 2. hardware encoder status bit is set

With the respective axis bit of argument m equal to 1, the encoder fault
interrupt is triggered for the axis in question if,

 1. abs[following error] > ferrx threshold

If an encoder fault interrupt condition is present for an axis, the axis
will be put into open loop with DAC output of 0 volts, and an interrupt
will be generated. If, however, the axis in question is already in open

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-85

EN_ENCFLT cont.

loop prior to the interrupt condition, an interrupt will be generated but
no action will be taken (ie: DAC voltage is unaffected).

The encoder fault interrupt is sustained until the EN_ENCFLT
command is reissued to the Mx4. Reissuing the EN_ENCFLT
command also allows the affected axis(es) to be put back into closed
loop following the execution of the command.

The hardware encoder status bits are reported to the lower nibble of
DPR location 113h (see Mx4 DPR Organization). A set bit indicates
that Mx4 has detected an encoder hardware failure. Mx4 reports an
“encoder status” error if for the axis in question,

1. the encoder feedback to Mx4 is losing encoder pulses or
one of the encoder signals (A or B) actively toggles while
the other one is inactive.

The DPR interrupt status locations 009h (bit 4) and 00Eh record the
occurrence and source of this interrupt, respectively. Bit 6 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

SEE ALSO DISABL2_INT

APPLICATION

A necessary diagnostic feature for all servo control applications.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Enable the encoder fault interrupt for both axis 3 and axis 4. Set the
following error threshold at 500 counts, using the encoder hardware
status bits in the interrupt conditions.

 EN_ENCFLT (0xc, 0xc, 500, 500)

DSPL Command Set

8-86

EN_ERR

FUNCTION Enable Following Error Interrupt

EXECUTION 50 microseconds

SYNTAX EN_ERR (n, fer1, ... , fer8)

USAGE DSPL (Motion), Host (command code 67h)

ARGUMENTS

n bit coding of the specified axis(es) for which the interrupt
is enabled

ferx unsigned following error value for axis x

 0  ferx  65535 counts

When used in DSPL, the argument ferx may be selected as a variable.

DESCRIPTION

Upon the execution of this command, if at any time the following error
for a specified axis exceeds its programmed value, the servo control
card will generate an interrupt. This condition is recorded in DPR
interrupt status register location 000h. The DPR status register location
02h will identify the axis(es) responsible. Bit 1 of DPR location
[Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL FERR_REG bit
register.

Note: EN_ERR is not disabled after it occurs. The host is responsible
for disabling the interrupt.

SEE ALSO DISABL_INT, EN_ERRHLT

APPLICATION

This command may be used in all applications for two reasons. First,
EN_ERR reports a run-away or any other out-of-control condition.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-87

EN_ERR cont.

Second, it makes sure that position error is within a specified tolerance
(i.e. the value in argument ferx.)

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Set a EN_ERR interrupt value of 200 encoder counts for axis 1.

 EN_ERR (0x1, 200)

DSPL Command Set

8-88

EN_ERRHLT

FUNCTION Enable Following Error Interrupt and Halt

EXECUTION 50 microseconds

SYNTAX EN_ERRHLT (n, fer1, ... , fer8)

USAGE DSPL (Motion), Host (command code: 66h)

ARGUMENTS

n bit coding of the specified axis(es) for which the interrupt
is enabled

ferx unsigned following error value for axis x

 0  ferx  65535 counts

When used in DSPL, the argument ferx may be selected as a variables.

DESCRIPTION

Upon execution of this command, if at any time the following error for
a specified axis exceeds it's programmed value, the system will halt and
generate an interrupt. The halt brings the motion of the axis in question
to a stop using the programmed maximum acceleration rate. This
interrupt condition is recorded in DPR interrupt status register location
000h. The DPR status register location 001h reveals the axis(es)
responsible. Bit 1 of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEh]
is also set.

The interrupt condition is also axis bit-coded in the DSPL FERRH_REG
bit register.

Note 1: EN_ERRHLT will be ignored if the respective axis abort
maximum acceleration is zero.

Note 2: EN_ERRHLT is not disabled after it occurs. The host is
responsible for disabling the interrupt.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-89

EN_ERRHLT cont.

SEE ALSO DISABL_INT, EN_ERR, ESTOP_ACC

APPLICATION

Applications of this command are similar to EN_ERR. However, as a
result of this command's interrupt, the system will come to a stop. Stop
trajectory uses the programmed abort maximum acceleration. Please see
ESTOP_ACC. Please note that this command is not appropriate to prevent
system run-away in case of encoder loss, since in the absence of the
encoder, the system cannot be stopped reliably.

Command Sequence Example
ESTOP_ACC () ;set the maximum accel. so system can be stopped
CTRL () ;these instructions enable system to stop motion
KILIMIT () ;set gains
.
.
EN_ERRHLT ()

EXAMPLE

Enable a following error/halt interrupt for axis 1, 2 and 3 with a
threshold of 100, 120 and 200 counts, respectively.

 EN_ERRHLT (0x7,100,120,200)

DSPL Command Set

8-90

EN_INDEX

FUNCTION Enable Index Pulse Interrupt

EXECUTION 200 microseconds

SYNTAX EN_INDEX (n)

USAGE DSPL (Motion), Host (command code: 69h)

ARGUMENTS

n bit coding the only axis for which the interrupt is enabled

DESCRIPTION

Upon the execution of this command, the servo control card will search
for the first index pulse edge from the specified axis. The pulse edge
generates an interrupt and registers the actual position for all axes in
DPR locations 103h - 112h. The DPR interrupt status register locations
000h and 003h record the occurrence and source of this interrupt. Bit 1
of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL INDEX_REG
bit register.

Note 1: Only one index pulse can generate an interrupt at any given
time. The EN_INDEX command enables the index pulse
interrupt for the axis specified and automatically disables the
previous one (if any).

Note 2: The EN_INDEX and EN_PROBE commands CAN BE ENABLED
simultaneously.

SEE ALSO DISABL_INT, POS_PRESET, POS_SHIFT

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-91

EN_INDEX cont.

APPLICATION

This command is used in homing applications. As a result of this
instruction, Mx4 will start searching for the first index pulse edge.
Upon the detection of an index pulse edge, position of the axis is
immediately recorded. This instruction must be used in conjunction
with POS_PRESET to perform homing for linear table (or other index-
based) position calibration.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Enable the index pulse interrupt for axis 4.

 EN_INDEX (0x8)

DSPL Command Set

8-92

EN_MOTCP

FUNCTION Enable Motion Complete Interrupt

EXECUTION 10 microseconds

SYNTAX EN_MOTCP (n)

USAGE DSPL (Motion), Host (command code: 65h)

ARGUMENTS

n bit coding of the specified axis(es) for which the interrupt
is enabled

DESCRIPTION

This command enables the motion complete interrupt for the axes
specified. The motion complete interrupt is generated when any closed
loop motion other than ring buffer 2nd order or ring buffer cubic spline
contouring comes to a stop. The DPR interrupt status register locations
000h and 005h record the occurrence and source of this interrupt. Bit 1
of DPR location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also bit-coded in the DSPL MOTCP_REG bit
register.

Note: EN_MOTCP is not disabled after it occurs. The host is
responsible for disabling the interrupt.

SEE ALSO DISABL_INT

APPLICATION

In any application that a new routine must run based on the end of a
motion, this command informs the host of motion completion. An
example of such an application is milling in which the spindle and z-
axes will start moving only when the x-y table has moved to a target
position.

Command Sequence Example
See AXMOVE and STOP

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-93

EN_MOTCP cont.

EXAMPLE

Enable the motion complete interrupt for all four axes.

 EN_MOTCP (0xF)

DSPL Command Set

8-94

EN_POSBRK

FUNCTION Enable Position Breakpoint Interrupt

EXECUTION 100 microseconds

SYNTAX EN_POSBRK (n, pos1, ... , pos8)

USAGE DSPL (Motion), Host (command code: 6Bh)

ARGUMENTS

n bit coding of the specified axis(es) for which the interrupt
is enabled

posx position breakpoint position value for axis x

 -2147483648  posx  2147483647 counts

When used in DSPL, arguments posx may be selected as a variable.

DESCRIPTION

This command enables the position breakpoint interrupt for the axes
specified. The position breakpoint interrupt is generated when the
actual position, for a specified axis, passes the programmed breakpoint.
The DPR interrupt status register locations 000h and 004h record the
occurrence and source of this interrupt. Bit 1 of DPR location
[Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL POSBRK_REG
bit register.

Note 1: The position breakpoint is calculated as the absolute distance
from the present position (position at the moment at which the
EN_POSBRK RTC is interpreted) to the position breakpoint value
entered. The breakpoint interrupt is set when the axis in
question travels (in either direction) a distance equal to the
calculated absolute distance.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-95

EN_POSBRK cont.

Note 2: EN_POSBRK is automatically disabled after the breakpoint
interrupt is generated. To activate this interrupt again, the host
must issue a new EN_POSBRK command.

Note 3: POS_PRESET and POS_SHIFT will automatically disable the
position breakpoint interrupt. The user is responsible for re-
enabling the intterupt.

SEE ALSO DISABL_INT, POS_PRESET, POS_SHIFT

APPLICATION

This instruction may be used in applications such as robotics, indexing
machine tools, etc. The CPU must be notified that the system has
passed an intermediate position. Based on this interrupt, the CPU will
execute a task. For example, in a robotics painting application, the paint
mixture may have to change based on the robot's arm location.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
OUTGAIN ()

EXAMPLE

Enable a breakpoint interrupt with a value of 60,000 counts for axis 1
and 500,000 for axis 2.

 EN_POSBRK (0x3,60000,500000)

DSPL Command Set

8-96

EN_PROBE

FUNCTION Enable General Purpose External Interrupt

EXECUTION 200 microseconds

SYNTAX EN_PROBE (m)

USAGE DSPL (Motion), Host (command code: 6Ch)

ARGUMENTS

m bit coding of the only *EXTx input signal enabled

[Mx4]
m=1h : from *EXT1
m=2h : from *EXT2

[Mx4 Octavia]
m=1h : from *EXT1
m=2h : from *EXT2
m=4h : from *EXT3
m=8h : from *EXT4

DESCRIPTION

Upon the execution of this command, the servo control card will search
for the first *EXTx pulse edge. The pulse edge generates an interrupt,
and registers the actual position for all axes in DPR locations 0A7h-
0B6h. (The hand shaking bytes are 0C8h and 0D0h for Mx4 and host,
respectively.) DPR interrupt status register locations 000h and 006h
record the occurrence and source of this interrupt. Bit 1 of DPR
location [Mx4:7FEh] [Mx4 Octavia:1FFEh] is also set.

The interrupt condition is also axis bit-coded in the DSPL PROBE_REG
bit register.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-97

EN_PROBE cont.

Note 1: Only one general purpose external interrupt can generate an
interrupt at any given time. The EN_PROBE command
enables the external interrupt specified and automatically
disables the previous one (if any).

Note 2: The EN_PROBE and EN_INDEX can be enabled
simultaneously.

SEE ALSO DISABL_INT, ESTOP_ACC

APPLICATION

This instruction is useful in probing applications. Since EN_PROBE
registers all positions when an interrupt occurs (falling pulse edge is
detected) it can be used in accurate recording of surface dimensions by
a probe.

 Command Sequence Example
CTRL () ;these instructions enable system to stop motion
KILIMIT ()
.
.
EN_PROBE ()
END

EXAMPLE

Enable the *EXT2 external interrupt.

 EN_PROBE (0x2)

DSPL Command Set

8-98

ERR1, …, ERR8 IDENTIFIER

IDENTIFIER Following Error State Variable

USAGE DSPL (PLC, Motion)

DESCRIPTION

A following error state variable holds a 32-bit two’s complement
integer value that represents the difference between the current position
and the actual position (in encoder edge counts) of the specified axis.

Name Description

ERR1 axis 1 following error
ERR2 axis 2 following error
ERRx axis x following error
.
.
ERR8 axis 8 following error

SEE ALSO CPOS1, INDEX_POS1, POS1, PROBE_POS1

EXAMPLE

The following error state variables can be used as follows:

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR1 = ERR4 / VAR3

 as one of the arguments in a DSPL conditional expression:

 IF(ERR3 <= VAR2)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-99

ESTOP_ACC (See Aoendix B)

FUNCTION Abort Motion Maximum Acceleration

EXECUTION 100 microseconds

SYNTAX ESTOP_ACC (n, acc1, ... , acc8)

USAGE DSPL (Motion), Host (command code: 86h)

ARGUMENTS

n bit coding of the specified axis(es) for which the interrupt
is enabled

accx unsigned value specifying the maximum halting
acceleration (deceleration) for axis x

 0  accx  1.999969 counts/(200s)2

Note: Acceleration is partitioned into 1 bit integer, 15 bits fraction.

When used in DSPL, argument accx may be selected as a variable.

DESCRIPTION

This command specifies the maximum halting acceleration
(deceleration) for the axes specified. The maximum acceleration values
are used in the following cases: EN_ERRHLT, and ESTOP_ACC.

Note: ESTOP_ACC will be ignored if the specified argument is zero.

SEE ALSO EN_ERRHLT, MAXACC, STOP, VELMODE

DSPL Command Set

8-100

ESTOP_ACC cont. (See Aoendix A)

APPLICATION

This command sets the maximum possible deceleration for a
mechanical actuator. This RTC is used to set the deceleration rate for an
emergency case. In contrast to MAXACC, ESTOP_ACC provides a sharper
deceleration such that the entire system comes to a stop as rapidly as
possible. Please remember that the STOP and VELMODE RTCs use MAXACC
for their acceleration/deceleration.

Command Sequence Example
ESTOP_ACC () ;set the abort maximum acceleration
CTRL () ;make sure the system is in closed loop
EN_ERRHLT () ;set the maximum tolerance for the following error
 ;if the following error exceeds the ABORTACC
 ;parameter, the system will stop immediately

EXAMPLE

Set an abort motion maximum acceleration for axes 2 and 3 of 0.5
encoder counts/(200 sec)2.

 ESTOP_ACC (0x6,0.5,0.5)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-101

ESTOP_REG, FERR_REG, FERRH_REG,
INDEX_REG, MOTCP_REG, OFFSET_REG,
POSBRK_REG, PROBE_REG IDENTIFIER

IDENTIFIER DSPL interrupt registers

USAGE DSPL (PLC, Motion)

DESCRIPTION

The status of a variety of Mx4 interrupt conditions is available to the
DSPL programmer. All of the DSPL interrupt bit registers, with the
exception of ESTOP_REG, are 16-bit registers (bit 0-15) that specify the
axis(es) responsible for the interrupt. The least significant four bits of
each of these registers follow an LSB (axis 1), MSB (axis 8) format (the
most significant 8 bits are unused). For example:

 bit 0: Axis 1 interrupt
 bit 1: Axis 2 interrupt
 bit 2: Axis 3 interrupt
 bit 3: Axis 4 interrupt

bit 4: Axis 5 interrupt
bit 5: Axis 6 interrupt
bit 6: Axis 7 interrupt
bit 7: Axis 8 interrupt

Since there is only one ESTOP signal for all four (8) axes, ESTOP_REG is a
single-bit (bit 0) register (the most significant 15 bits are unused). In all
of the interrupt registers, a set bit (bit = 1) indicates an interrupt.

The bit register may be used with the bitwise operators in conditional
expressions within the DSPL IF, WHILE and WAIT_UNTIL conditional
structures. The user defined bit mask used in conjunction with the
bitwise operator & must follow the format 0x????, where ???? is a 16-
bit hexadecimal value. For example, a mask value of 0x0006 will mask
out all bits except bits 1 and 2.

DSPL Command Set

8-102

ESTOP_REG, FERR_REG, FERRH_REG,
INDEX_REG, MOTCP_REG, OFFSET_REG,
POSBRK_REG, PROBE_REG cont. IDENTIFIER

Name Bit Values Description

The ESTOP_REG interrupt bit is set if an emergency stop is being
signaled.

ESTOP_REG bits 0 Emergency stop interrupt
 bits 1 - 15 unused

An FERR_REG interrupt bit is set if the following error for a specified
axis exceeds a programmed value.

FERR_REG bits 0 - 7 Following error interrupt
 bits 8 - 15 unused

An FERRH_REG interrupt bit is set if the following error for a specified
axis exceeds a programmed value. The system is halted.

FERRH_REG bits 0 - 7 Following error & halt interrupt
 bits 8 - 15 unused

An INDEX_REG interrupt bit is set when an index pulse edge is reached.

INDEX_REG bits 0 - 7 Index pulse interrupt
 bits 8 - 15 unused

A MOTCP_REG interrupt bit is set when any closed loop motion comes to
a stop.

MOTCP_REG bits 0 - 7 Motion complete interrupt
 bits 8 - 15 unused

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-103

ESTOP_REG, FERR_REG, FERRH_REG,
INDEX_REG, MOTCP_REG, OFFSET_REG,
POSBRK_REG, PROBE_REG cont. IDENTIFIER

An OFFSET_REG interrupt bit is set when offset tuning has completed.

OFFSET_REG bits 0 - 7 Offset finished interrupt
 bits 8 - 15 unused

A POSBRK_REG interrupt bit is set when the actual position for a
specified axis has passed a certain point.

POSBRK_REG bits 0 - 7 Position breakpoint interrupt
 bits 8 - 15 unused

A PROBE_REG interrupt bit is set when the first *EXT pulse edge is
found.

[Mx4]
PROBE_REG bits 0 - 1 External probe interrupt
 bits 8 - 15 unused

[Mx4 Octavia]
PROBE_REG bits 0 - 3 External probe interrupt
 bits 8 - 15 unused

SEE ALSO ~, &, AND, OR, IF, WHILE, WAIT_UNTIL

EXAMPLE

The conditional expression in the DSPL IF statement below will
evaluate to TRUE if bit 0 or 2 is set (bit = 1) in the motion complete
interrupt register:

 IF (MOTCP_REG & 0x0005)

DSPL Command Set

8-104

FLUX_CURRENT Vx4++ option command

FUNCTION Set Field Compensation Or Flux Value

EXECUTION 200 microseconds

SYNTAX FLUX_CURRENT (n, fval1, ... , fval8)

USAGE DSPL (Motion), Host (command code: 79h)

ARGUMENTS

n bit coding of the specified axis(es)
fvalx for AC induction motor, defines a bipolar flux value for

the field producing component of the current

 -32768  fvalx  32767

 for brushless DC motor, defines a unipolar field

compensation parameter

 0  fvalx  65535

When used in DSPL, the argument fvalx may be selected as a variable.

DESCRIPTION

The FLUX_CURRENT command defines motor technology-dependent
parameters. If the axis in question is an AC induction motor, the
command defines a bipolar flux value for the field producing
component of the current. If the axis is a brushless DC motor, the
command sets a unipolar field compensation parameter.

Note: The FLUX_CURRENT command does not need to be
programmed for brushtype DC motors.

SEE ALSO none

APPLICATION

See Vx4++ User's Guide

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-105

FLUX_CURRENT cont.

EXAMPLE

Set a flux value or -5000 for axis one (AC induction motor) and a field
compensation value of 1300 for axis two (brushless DC motor).

FLUX_CURRENT (0x3, -5000, 1300)

DSPL Command Set

8-106

FRAC

FUNCTION Extract the Fractional Portion of a Constant or a Variable
 Value.

EXECUTION 10 microseconds

SYNTAX FRAC(valu) or -FRAC(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant real number
 or a
 variable (VAR1 through VAR128)

DESCRIPTION

This function extracts the fractional portion of a constant or a variable
value. The fractional portion of a number consists of all of the digits to
the right of the decimal point. The returned value will therefore always
have an absolute value that is less than 1. If a minus sign appears to the
left of the FRAC function, the fractional portion of valu is multiplied by -
1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR55 = FRAC(17.283)

SEE ALSO ABS, INT, SIGN, SQRT

EXAMPLE

The first example extracts the fractional portion of the value stored in
VAR27, and stores the result in VAR18:

 VAR18 = FRAC(VAR27)

The second example finds the fractional portion of -882.619 and stores
the negated result (0.619) in VAR38:

 VAR38 = -FRAC(-482.619)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-107

GEAR

FUNCTION Electronics Gear On

EXECUTION 200 microseconds

SYNTAX GEAR (n, m, r1, ... , r8)

USAGE DSPL (Motion), Host (command code: 09Ch)

ARGUMENTS

n bit coding the ONLY axis as LEADER gear
m bit coding the axis(es) as FOLLOWER gears
rx gear ratio between master and slave

 -256  ratiox < 255.999

minimum gear ratio is +/- 1/128

When used in DSPL, argument rx may be selected as variable.

DESCRIPTION

This command emulates the mechanical gear function. The follower
follows the leader with the gear ratio specified by rx. Upon receiving
this command, the electronic gearing is engaged at once.

SEE ALSO GEAR_OFF, GEAR_POS, GEAR_PROBE

APPLICATION

See Application Notes

EXAMPLE

Axis 2 is a slave axis to axis 1 with a gear ratio of 2.5.

 GEAR (0x1,0x2,2.5)

DSPL Command Set

8-108

GEAR_OFF

FUNCTION Electronics Gear Off

EXECUTION 10 microseconds

SYNTAX GEAR_OFF (n)

USAGE DSPL (Motion), Host (command code: 09Fh)

ARGUMENTS

n bit coding of the FOLLOWER axis(es) to be disengaged

DESCRIPTION

This command disengages the specified follower axes at once.

SEE ALSO GEAR, GEAR_POS, GEAR_PROBE

APPLICATION

See DSPL Application Notes

EXAMPLE

Axis 1 is the leader, axis 3 and 4 are the followers (slaves). Disengage
only axis 4.

 GEAR_OFF (0x8)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-109

GEAR_OFF_ACC

FUNCTION Turns Electronic Gearing Off and Halt Slave(s)

EXECUTION 50 microseconds

SYNTAX GEAR_OFF_ACC (n)

USAGE DSPL (Motion), Host (command code: A0h)

ARGUMENTS

n bit coding of the axis to be disengaged

DESCRIPTION

This command disengages the system that was under master slave
control. The slave axes will come to a complete stop at the maximum
acceleration rate specified by MAXACC command.

SEE ALSO GEAR, GEAR_OFF, GEAR_POS, GEAR_PROBE, SYNC

APPLICATION

Axis 1 is the leader, axis 3 and 4 are the followers (slaves). Disengage
only axis 4.

 GEAR_OFF_ACC (0x8)

DSPL Command Set

8-110

GEAR_POS

FUNCTION Electronics Gear On at a Specified Leader Position

EXECUTION 200 microseconds

SYNTAX GEAR_POS (n, m, r1, tp1, ... , r8, tp8)

USAGE DSPL (Motion), Host (command code: 09Dh)

ARGUMENTS

n bit coding of the ONLY axis as LEADER gear
m bit coding of the FOLLOWER axis(es)
rx gear ratio between leader and follower(s) (ratiox : 1)

 -256  ratiox < 255.999

 minimum gear ratio is +/- 1/128

tpx leader axis position value at which the electronic gearing

engages for the specified axis(es)

 -2147483648  tpx  2147483647

When used in DSPL, arguments rx and tpx may be selected as variables.

DESCRIPTION

This command emulates a mechanical gear function. The follower
follows the leader with the gear ratio specified by rx. Upon receiving
this command, the electronic gearing starts engaging at the specified
master position (tpx).

SEE ALSO GEAR, GEAR_OFF, GEAR_PROBE

APPLICATION

See DSPL Application Notes

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-111

GEAR_POS cont.

EXAMPLE

Axes 3 and 4 should follow axis 2 with gear ratios 2.0 and 4.0,
respectively. Both axes three and four should “engage” when axis 2
position is equal to 10,500 counts.

 GEAR_POS (0x2,0xC,2.0,10500,4.0,10500)

DSPL Command Set

8-112

GEAR_PROBE

FUNCTION Electronics Gear On After Probe Input

EXECUTION 200 microseconds

SYNTAX GEAR_PROBE (n, m, q, r1, ... , r8)

USAGE DSPL (Motion), Host (command code: 09Eh)

ARGUMENTS

n bit coding the ONLY axis as LEADER gear
m bit coding the FOLLOWER axis(es)
q the *EXTx probe input to be used

 [Mx4]

q = 01h : *EXT1
 q = 02h : *EXT2

[Mx4 Octavia]
q = 01h : *EXT1

 q = 02h : *EXT2
 q = 03h : *EXT3
 q = 04h : *EXT4

rx gear ratio between master and slave(s)

 -256  ratiox < 255.999
 minimum gear ratio is +/- 1/128

When used in DSPL, argument rx may be selected as variable.

DESCRIPTION

This command emulates the mechanical gear function. The follower
follows the leader with the gear ratio specified by rx. The GEAR_PROBE
command engages the mechanical gear function for selected master and
slave axes after the specified external signal (*EXTx) is activated.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-113

GEAR_PROBE cont.

Note 1: Execution of the GEAR_PROBE command will disable any
previously enabled EN_PROBE interrupt. Probe (*EXT1,2,3,4)
activation does not generate an interrupt with the GEAR_PROBE
command.

Note 2: Activation of *ESTOP during a GEAR operation will halt the
master axis, and subsequently the slave axis(es). Slave(s)
remain “engaged” in GEAR mode after the input-triggered
halt.

SEE ALSO GEAR, GEAR_OFF, GEAR_POS

APPLICATION

See DSPL Application Notes

EXAMPLE

Axis 8 is the leader, axis 1is the follower with a gear ratio of 4.0. Axis 1
should “engage” at the occurrence of probe interrupt *EXT2.

 GEAR_PROBE (0x8,0x1,2,4.0)

DSPL Command Set

8-114

ICUBCOUNT IDENTIFIER

IDENTIFIER Cubic Spline Table Index Counter

USAGE DSPL (PLC, Motion)

DESCRIPTION

ICUBCOUNT is a DSPL reserved word that is used to indicate to the
DSPL program at which index the internal cubic spline (CUBIC_INT) is
running.

SEE ALSO none

EXAMPLE

The DSPL line below checks the range of ICUBCOUNT as part of a
conditional expression:

 IF ((ICUBCOUNT > 1) AND (ICUBCOUNT < 5))

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-115

IF

FUNCTION IF Operand of IF-(then)-(ELSE)-ENDIF Structure

EXECUTION 200 microseconds

SYNTAX IF (conditional expression)

 program code to execute if the IF condition is True

ELSE

 program code to execute if the IF condition is
False

ENDIF

USAGE DSPL (PLC, Motion)

ARGUMENTS

conditional expression

The conditional expression must be boolean, equating to True or False.
The conditional expression may consist of multiple boolean conditions
ANDed or ORed together. The conditional expression operators are:

 > greater than
 < less than
 >= greater than or equal
 <= less than or equal
 = = equal
 != not equal
 AND logical AND
 OR logical OR
 & bit-wise AND

The conditional expression is enclosed via sets of parentheses. Nested
parentheses may be used when multiple boolean conditions are used or
more complex conditional expressions are implemented.

DSPL Command Set

8-116

IF cont.

Note: If nested parentheses are not used to indicate evaluation
precedence in a conditional expression, the expression will be
evaluated from left-to-right.

For example,

IF ((VAR1 > 100) AND (POS2 > 100) AND
(ERR1 == 200) OR (IN_REG1 & 0x3) AND
(CVEL1 > 10))

This line is interpreted in DSPL as:

IF ({ { { [(VAR1 > 100) AND (POS2 > 100)]
AND (ERR1 == 200) } OR
(IN_REG1 & 0x3) }AND ((CVEL1 > 10) })

DESCRIPTION

The IF-(then)-ELSE structure is used for conditional program
execution. When IF-(then)-ENDIF statements are used, Mx4 will test
the boolean condition(s). The instruction(s) after the IF statement will
be executed if the conditional expression is True, otherwise the
instruction(s) after the ENDIF statement will be executed. If the
complete IF-(then)-ELSE-ENDIF structure is used, the instruction(s)
following the ELSE operand will be executed if the conditional
expression evaluates to False, program flow will then continue to the
next instruction following the ENDIF statement.

IF-(then)-(ELSE)-ENDIF structures may be nested.

SEE ALSO ELSE, ENDIF

APPLICATION

See Application Notes

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-117

IF cont.

EXAMPLE

Bring the motion of axis three to a halt if VAR1 is equal to 0 and the
following error of axis three is greater than 1000 counts. If the above
condition is False, preset the position of axis one to 100000, and if
VAR2 is equal to 1, preset the position of axis two to 2000 counts.

 IF ((VAR1 == 0) AND (ERR3 > 1000))
 STOP (0x4)
 ELSE
 POS_PRESET (0x1,100000)
 IF (VAR2==1)
 POS_PRESET (0x2,2000)
 ENDIF
 ENDIF

DSPL Command Set

8-118

INDEX_POS1, …, INDEX_POS8 IDENTIFIER

IDENTIFIER Index Position State Variable

USAGE DSPL (PLC, Motion)

DESCRIPTION

An index position state variable holds a 32-bit two’s complement
integer value that represents the index position (in encoder edge counts)
of the specified axis.

Name Description

INDEX_POS1 axis 1 index position
INDEX_POS2 axis 2 index position
INDEX_POS3 axis 3 index position
INDEX_POS4 axis 4 index position
INDEX_POS8 axis 5 index position
INDEX_POS6 axis 6 index position
INDEX_POS7 axis 7 index position
INDEX_POS8 axis 8 index position

SEE ALSO CPOS1, ERR1, POS1, PROBE_POS1

EXAMPLE

The index position state variables can be used as follows:

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR1 = INDEX_POS2 + 1000

 as one of the arguments in a DSPL conditional expression:

 WAIT_UNTIL(INDEX_POS3 >= VAR22)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-119

INP_STATE (See Aoendix A)

FUNCTION Configure Logic State of Inputs

EXECUTION 10 microseconds

SYNTAX INP_STATE (inp1, inp2)

USAGE DSPL (Motion), Host (command code: B4h)

ARGUMENTS

inp1 bit coding the logic state of inputs

 bit = 0 : active LOW input
 bit = 1 : active HIGH input

 bit 15 : IN15
 .
 .
 bit 0 : IN0

inp2 bit coding the logic state of inputs

 bit = 0 : active LOW input
 bit = 1 : active HIGH input

 bit 15 : IN31
 .
 .
 bit 0 : IN16

When used in DSPL, arguments inp1 and inp2 may be selected as
variables.

DSPL Command Set

8-120

INP_STATE cont. (See Aoendix A)

DESCRIPTION

This command allows the user to define the logic state of the [Mx4:22]
[Mx4 Octavia:32] inputs. Each input may be configured as active LOW
or active HIGH (TTL logic levels) (the Mx4 inputs are level sensitive).

Note: At power-up and reset, Mx4 inputs default as active LOW.

SEE ALSO none

EXAMPLE

Configure the IN0 input as active HIGH input. The remaining inputs
are to be configured as active LOW.

 INP_STATE (0x0001,0x0000)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-121

INPUT Acc4 option command

FUNCTION read value from ASCII terminal

EXECUTION 200 microseconds

SYNTAX INPUT (dvar)

USAGE DSPL (Motion)

ARGUMENTS

dvar VAR1-VAR128. Specifies DSPL variable in which the
 value returned from the terminal is stored.

DESCRIPTION

The INPUT command is used to write a value sent by the ASCII terminal
to the specified DSPL variable. The ASCII transmission to the terminal
takes the format:

 ‘??’

The DSPL motion program from which the INPUT command was
executed will halt (wait) program execution until the value is returned
from the ASCII terminal. The ASCII transmission from the terminal to
the Mx4 must follow the format:

 Inp=x

Where x may range from =2147000000 <=x <= 2147000000. The
value written is an integer with 3 implied fractional digits. For example
inp=123456 will set the specified variable to 123.456.

EXAMPLE

Request ASCII input, assign to VAR15

INPUT (VAR15)

DSPL Command Set

8-122

INT

FUNCTION Extract the Integer Portion of a Constant or a Variable
 Value.

EXECUTION 10 microseconds

SYNTAX INT(valu) or -INT(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant or a variable (VAR1 through VAR128)

DESCRIPTION

This function extracts the integer portion of a constant or a variable
value. The integer portion of a number consists of all of the digits to
the left of the decimal point. If a minus sign appears to the left of the
INT function, the integer portion of valu is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR55 = INT(VAR22)

SEE ALSO ABS, FRAC, SIGN, SQRT

EXAMPLE

The first example extracts the integer portion of the value stored in
VAR64, and stores the negated result in VAR2:

 VAR2 = -INT(VAR64)

The second example finds the integer portion of -61.839 and stores the
result (-61) in VAR5:

 VAR5 = INT(-61.839)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-123

INT_HOST

FUNCTION Generate an Interrupt to the Host from DSPL

EXECUTION 10 microseconds

SYNTAX INTHOST (id)

USAGE DSPL (PLC, Motion)

ARGUMENTS

id interrupt signature or identifier

 0x00  id  0xFF

DESCRIPTION

The INT_HOST command generates a hardware interrupt to the host
upon its execution. The 8-bit identifier id will be copied to the Dual
Port RAM at location 0x00E, and bit 4 in the interrupt register 2 (009h)
will be set.

SEE ALSO none

APPLICATION

See Application Notes

EXAMPLE

Generate an interrupt to the host with an identifier byte equal to ABh.

 INT_HOST (0xAB)

DSPL Command Set

8-124

INT_REG_ALL_CLR

FUNCTION Clears the DSPL Interrupt and Input Bit Register Variables

EXECUTION 10 microseconds

SYNTAX INT_REG_ALL_CLR ()

USAGE DSPL (PLC, Motion)

ARGUMENTS

none

DESCRIPTION

The INT_REG_ALL_CLR command clears the DSPL interrupt bit registers:

 INDEX_REG MOTCP_REG
 ESTOP_REG OFFSET_REG
 FERR_REG POSBRK_REG
 FERR_REG PROBE_REG

SEE ALSO INT_REG_CLR

APPLICATION

See Application Notes

EXAMPLE

Clear the DSPL Bit Register Variables.

 INT_REG_ALL_CLR ()

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-125

INT_REG_CLR

FUNCTION Clears the Specified DSPL Bit Register Variables

EXECUTION 10 microseconds

SYNTAX INT_REG_CLR (m, mask1, ... , mask8)

USAGE DSPL (PLC, Motion)

ARGUMENTS

m bit coding specifying the interrupt registers to modify,

 bit 9-15 : unused
 bit 8 : ENCFLT_REG
 bit 7 : ESTOP_REG
 bit 6 : FERRH_REG
 bit 5 : FERR_REG
 bit 4 : OFFSET_REG
 bit 3 : PROBE_REG
 bit 2 : MOTCP_REG
 bit 1 : POSBRK_REG
 bit 0 : INDEX_REG

mask a hexadecimal bit mask specifying which bits of the

specified bit register are to be cleared. A set bit (bit=1) in
the mask indicates the corresponding bit in the variable bit
register is to be cleared.

DESCRIPTION

The INT_REG_CLR command is used to clear only the specified bits of
selected variable bit register(s).

SEE ALSO INT_REG_ALL_CLR

DSPL Command Set

8-126

INT_REG_CLR cont.

APPLICATION

 See Application Notes

EXAMPLE

Clear the axis two and axis four following error interrupt bits of the
OFFSET_REG bit register. Also, clear the INDEX_REG bits for all 4
axes.

 INT_REG_CLR(0x0011,0xF,0xA0)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-127

KILIMIT

FUNCTION Integral Gain Limit

EXECUTION 200 microseconds

SYNTAX KILIMIT (n, val1, ... , val8)

USAGE DSPL (Motion), Host (command code: 74h)

ARGUMENTS

n bit coding of the specified axis(es)
valx value setting the limit of the integral action for each axis

Note: 0  val  14

 val = 0 indicates no limit on integration channels
 val = 14 indicates maximum limit on integration channels

For example,

Kilimit val = 0 +/- 10v DAC action from Ki control law parameter
Kilimit val = 1 +/- 5v DAC action from Ki control law parameter
Kilimit val = 2 +/- 2.5v DAC action from Ki control law parameter
Kilimit val = 3 +/- 1.25v DAC action from Ki control law parameter
 :
 :

DESCRIPTION

This command is used to set the limit for integral action related to the
choice of parx1 in the CTRL RTC. Integral limit is specified for each
axis. Default valx are set to zero (i.e., no limit on integration channels).

SEE ALSO CTRL

DSPL Command Set

8-128

KILIMIT cont.

APPLICATION

This command clamps the integral channel by reducing this channel's
saturation level. Reducing the saturation level will reduce the channel's
depletion time. Using this instruction is essential where large integral
gain is required. Clamping the integral channel will let the system zero
position error without a lengthy "creeping motion" to its target position.

Command Sequence Example
CTRL () ;set the gains
KILIMIT () ;this instruction may be used before or after CTRL

EXAMPLE

Set a maximum limit on the integral action of axis 2, 3 and 4.

 KILIMIT (0xE,14,14,14)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-129

LINEAR_MOVE

FUNCTION Simple Constant Acceleration Linear Motion

EXECUTION 200 microseconds

SYNTAX LINEAR_MOVE (n, pos1, vel1, ..., pos8, vel8)

USAGE DSPL (Motion)

ARGUMENTS

n bit coding of the specified axis(es)
posx target position for axis x

 -2147483648 <= posx <= 2147483647 counts

velx target velocity for axis x

 -256 <= velx <= 255.99998 counts/200sec

When used in DSPL, arguments posx and velx may be selected as
variables.

DESCRIPTION

The LINEAR_MOVE command allows the user to program a constant
acceleration linear profile in any or all of the four axes. The user
simply enters the target position and target velocity for the axis in
question. The Mx4 will automatically calculate the required
acceleration to accomplish the motion.

Upon execution of a CIRCLE or LINEAR related command, the DSPL
program flow will proceed to the following command. If the following
command is not a CIRCLE or LINEAR related command, it will be
executed immediately. If the following command is a CIRCLE or
LINEAR related command, it will be executed after the previous CIRCLE/
LINEAR motion is complete.

DSPL Command Set

8-130

LINEAR_MOVE Cont.

Note: A LINEAR_MOVE command may not pass through the same
position more than once. For example, a LINEAR_MOVE
motion may not decelerate to zero velocity and continue
decelerating (ie: change velocity polarity). If the above
condition is violated, the LINEAR_MOVE motion will not be
executed.

Note: The LINEAR_MOVE command will automatically calculate
the acceleration for the motion. If the calculated acceleration
is approximated to zero (ie: too small to be represented in the
16-bit fractional numerical range), the LINEAR_MOVE motion
will not be executed.

SEE ALSO CIRCLE, LINEAR_MOVE_S, LINEAR_MOVE_T

APPLICATION

See DSPL Application Notes

EXAMPLE

From the present positions and velocities, move axes 1 and 4 to zero
position with velocities of 1 and -2 counts/200sec, respectively.

LINEAR_MOVE (0x9, 0, 1, 0, -2)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-131

LINEAR_MOVE_S

FUNCTION Linear, S-Curve Motion

EXECUTION 200 microseconds

SYNTAX LINEAR_MOVE_S (n, pi1, vi1, pt1, vt1, t1, a1, ... ,
pi8, vi8, pt8, vt8, t8, a8)

USAGE DSPL (Motion)

ARGUMENTS

n bit coding of the specified axis(es)
pix initial starting position of axis x

 -2147483648  pix  2147483647 counts

vix initial starting velocity of axis x

 -256  vix  255.99998 counts/200s

ptx target position for axis x

 -2147483648  ptx  2147483647 counts

vtx target velocity for axis x

 -256  vtx  255.99998 counts/200s

tx time for linear move motion to complete for axis x

 0.1 ms  tx  223 minutes

DSPL Command Set

8-132

LINEAR_MOVE_S cont.

Note: tx has a default unit of 200s, however the tx value must be a
multiple of 5ms. If tx is not a multiple of 5ms, tx will be
truncated by the compiler.

ax unsigned value specifying acceleration for linear move

motion

 0  ax  1.999969 counts/(200s)2

DESCRIPTION

The LINEAR_MOVE_S command is a general purpose motion command
that allows the user to accomplish S-Curve, constant acceleration, or
constant velocity motion in any or all of the four axes.

Upon execution of a CIRCLE or LINEAR related command, the DSPL
program flow will proceed to the following command. If the following
command is not a CIRCLE or LINEAR related command, it will be
executed immediately. If the following command is a CIRCLE or
LINEAR related command, it will be executed after the previous CIRCLE/
LINEAR motion is complete.

S-Curve Motion

The LINEAR_MOVE_S command can generate S-curve motion with the
proper tx and ax argument values.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-133

LINEAR_MOVE_S cont.

V

t
tx

S-Curve Velocity Profile

For S-curve motion, the tx and ax value must meet the following
requirements:

 t
2 (pt pi)

vt vix
x x

x x


 



 a , min vt vi / tx x x x 

 a , max vt vi / tx x x x  2

 ax, min  ax  ax, max

If the above tx and ax conditions are not met, the compiler will give a
warning and recalculate the offending parameter(s).

Constant Acceleration Motion

A constant acceleration velocity profile may be achieved with the
LINEAR_MOVE_S command by following these conditions:

tx  0
ax  0
vix  vtx

DSPL Command Set

8-134

LINEAR_MOVE_S cont.

The compiler calculates the tx and ax values based on the P-V-T
calculations,

 t
2 (pt pi)

vt vix
x x

x x


 



 pt pi (vt vi) t / 2x x x x x   
 a (vt vi) / tx x x x 

REMEMBER, tx must evaluate to a multiplier of 5ms in the above
equations.

V

t
tx

Constant Acceleration Velocity Profile

Constant Velocity Motion

LINEAR_MOVE_S generates a constant velocity profile when the following
conditions are met:

tx  0
ax  0
vix  vtx

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-135

LINEAR_MOVE_S cont.

The compiler calculates the tx value based on the P-V-T calculation,

 pt x pix vt x t x  

 t x
pt x pi x

vt x




Again, REMEMBER that tx must evaluate to a multiple of 5ms in the
above equation. Therefore, choose the P and V values accordingly.

V

t
tx

Constant Velocity Profile

SEE ALSO CIRCLE, LINEAR_MOVE, LINEAR_MOVE_T

APPLICATION

See Application Notes

EXAMPLE 1 Constant Velocity

Move axis one from a current position of 50,000 counts to a target
position of 100,000 counts with a constant velocity equal to 2.5
counts/200s.

DSPL Command Set

8-136

LINEAR_MOVE_S cont.

n 0x1
pi1 50,000 counts
vi1 2.5 counts /200s
pt1 100,000 counts
vt1 2.5 counts /200s
t1 0 (200ms units)
a1 0 counts / (200s)2

 LINEAR_MOVE_S (0x1, 50000, 2.5, 100000, 2.5, 0, 0)

Note: The axis one velocity must equal 2.5 counts/200s before
executing the LINEAR_MOVE_S command ... remember vi1 =
2.5.

EXAMPLE 2 Multi-Axis Motion

In addition to executing the axis one motion of Example 1, move axis
three from an initial position, initial velocity (0,0) to target position,
target velocity (10000, 5.0) with constant acceleration.

n 0x5
pi1 50,000 counts
vi1 2.5 counts /200s
pt1 100,000 counts
vt1 2.5 counts /200s
t1 0 (200ms units)
a1 0 counts / (200s)2

pi3 0 counts

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-137

LINEAR_MOVE_S cont.

vi3 0 counts /200s
pt3 10,000 counts
vt3 5.0 counts /200s
t3 0 (200ms units)
a3 0 counts / (200s)2

LINEAR_MOVE_S (0x5, 50000, 2.5, 100000, 2.5, 0, 0, 0, 0, 10000,
5.0, 0, 0)

EXAMPLE 3 S-Curve Motion

Move axis four from initial position, initial velocity (1000, 1.0) to
target position, target velocity (11000, 4.0) with S-curve velocity
profile utilizing minimum acceleration.

n 0x8
pi4 1,000 counts
vi4 1.0 counts /200s
pt4 11,000 counts
vt4 4.0 counts /200s

t4
2(11,000 1,000)

4.0 1.0
4,000 (200 s units




 )

a4 a , min 4.0 1.0 4,000 0.0075 counts / (200 s)4

2   

LINEAR_MOVE_S(0x8, 1000, 1.0, 11000, 4.0,

4000,0.00075)

DSPL Command Set

8-138

LINEAR_MOVE_T

FUNCTION Simple Time-Based Constant Acceleration Linear Motion

EXECUTION 200 microseconds

SYNTAX LINEAR_MOVE_T (n, pos1, tm1, ..., pos8, tm8)

USAGE DSPL (Motion)

ARGUMENTS

posx target position for axis x

 -2147483648 <= posx <= 2147483647 counts

tmx motion time for axis x

 0  tmx  5000000 (200s)

Note: The time argument, tmx, is an unsigned value with a unit of
200usec.

When used in DSPL, arguments posx and tmx may be selected as
variables.

DESCRIPTION

The LINEAR_MOVE_T command allows the user to program a constant
acceleration linear profile in any or all of the four axes. The user
simply enters the target position and time to complete the move for the
axis in question, and the Mx4 will automatically calculate the required
acceleration and velocity to accomplish the motion.

Upon execution of a CIRCLE or LINEAR related command, the DSPL
program flow will proceed to the following command. If the following
command is not a CIRCLE or LINEAR related command, it will be
executed immediately. If the following command is a CIRCLE or
LINEAR related command, it will be executed after the previous CIRCLE/
LINEAR motion is complete.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-139

LINEAR_MOVE_T cont.

Note: A LINEAR_MOVE_T command may not pass through the
same position more than once. For example, a
LINEAR_MOVE_T motion may not decelerate to zero velocity
and continue decelerating (ie: change velocity polarity). If the
above condition is violated, the LINEAR_MOVE_T motion
will not be executed.

Note: The LINEAR_MOVE_T command will automatically calculate
the acceleration for the motion. If the calculated acceleration
is approximated to zero (ie: too small to be represented in the
16-bit fractional numerical range), the LINEAR_MOVE_T
motion will not be executed.

SEE ALSO CIRCLE, LINEAR_MOVE, LINEAR_MOVE_S

APPLICATION

See Application Notes

EXAMPLE

From the present positions and velocities, move axes 1 and 4 to zero
position in 1.5 seconds.

LINEAR_MOVE_T (0x9, 0, 7500, 0, 7500)

DSPL Command Set

8-140

LOW_PASS (option)

FUNCTION Implement Low Pass Filter at Controller Output

EXECUTION 200 microseconds

SYNTAX LOW_PASS (n, freqx)

USAGE DSPL (Motion), Host (command code: 8Eh*)

Note: This RTC code (8Eh) is the same as the one used with NOTCH,
therefore one option (either LOW_PASS or NOTCH) can be used at
any time.

ARGUMENTS

n bit coding of the only specified axis
freqx unsigned value specifying the low pass filter cut-off

frequency for axis x

 0  freqx  1850

When used in DSPL, the argument freqx may be selected as a variable.

DESCRIPTION

This command implements a low pass filter at the controller output for
the specified axis.

V

K
K

P

n

d
i

n
_

+ +

+

+ +
_

Sampling Period

P ACTUAL

nV̂

K f

Kp

Kalman
Filter

K Limiti

to DACOutput
Loop Gain

Low Pass
Filter

Mx4 Block Diagram with Low Pass Filter

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-141

LOW_PASS cont.

The low pass filter implements the following transfer function:

G s
s s

n

n n

() 
  


 

2

2 22

where,  n nf 2 , fn = cut-off frequency, and   0 6.

The frequency and bandwidth of the low pass filter is programmable.

Note: By programming a cut-off frequency of 0, the low pass filter
for the specified axis is disabled.

SEE ALSO none

EXAMPLE: DSPL Programming Low Pass

1) Set a low pass filter at 250 Hz for axis 2 (see below).

 LOW_PASS (0x2,250)

2) Disable the low pass filter of axis 1.

 LOW_PASS (0x1,0)

Note: Mx4 default setting for low pass filter is no filter (or filter
disabled.

DSPL Command Set

8-142

LOW_PASS cont.

 Magnitude Diagram

 Phase Diagram of 250 Hz Low Pass Filter

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-143

MAXACC

FUNCTION Maximum Acceleration

EXECUTION 100 microseconds

SYNTAX MAXACC (n, acc1, ... , acc8)

USAGE DSPL (Motion), Host (command code: 71h)

ARGUMENTS

n bit coding of the specified axis(es)
accx unsigned value specifying the maximum acceleration /

deceleration for axis x

 0  accx  1.999969 counts/(200s)2

Note: Acceleration is partitioned into 1 bit integer, 15 bits fraction.

When used in DSPL, argument accx may be selected as a variable.

DESCRIPTION

This command specifies the maximum acceleration / deceleration for
the axes specified. The maximum acceleration values are used in the
STOP and VELMODE commands.

Note: MAXACC will be ignored if the specified argument is zero.

SEE ALSO ESTOP_ACC, STOP, VELMODE

DSPL Command Set

8-144

MAXACC cont.

APPLICATION

This command sets the maximum acceleration affordable by the servo
drive and motor combination. It is useful to program this parameter
such that the system will not go to control saturation during VELMODE or
STOP.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
.
.
AXMOVE () ;run system in axis move
VELMODE () ;run system in velocity mode

EXAMPLE

Set a maximum acceleration for axes 2 and 3 of 0.25 encoder counts /
(200s)2.

 MAXACC (0x6,0.25,0.25)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-145

MOTOR_PAR Vx4++ option command

FUNCTION Motor Parameter

EXECUTION 200 microseconds

SYNTAX MOTOR_PAR (n, mpar1, ... , mpar8)

USAGE DSPL (Motion), Host (command code: 76h)

ARGUMENTS

n bit coding of the specified axis(es)
mparx for AC induction motor, defines the motor slip gain

 -32768  fvalx  32767

 for brushless DC motor, defines the commutation angle

 -32768  fvalx  32767

When used in DSPL, the argument mparx may be selected as a variable.

DESCRIPTION

The MOTOR_PAR command defines motor technology-dependent
parameters. If the axis in question is an AC induction motor, the
command defines the motor slip gain. If the axis is a brushless DC
motor, the command defines the commutation angle (in encoder
counts).

Note: The MOTOR_PAR command does not need to be programmed for
brushtype DC motors.

SEE ALSO none

APPLICATION

See Vx4++ User's Guide
EXAMPLE

Program a slip gain equal to 5500 for axes two, three, and four (the
motors are identical AC induction motors)

MOTOR_PAR (0xE, 5500, 5500, 5500)

DSPL Command Set

8-146

MOTOR_TECH Vx4++ option command

FUNCTION Motor Technology

EXECUTION 200 microseconds

SYNTAX MOTOR_TECH (n, mtech1, ... , mtech8)

USAGE DSPL (Motion), Host (command code: 7Ch)

ARGUMENTS

n bit coding of the specified axis(es)
mtechx for AC induction, mtechx = AC_IND
 for brushless DC, mtechx = BRUSHLESS_DC
 for brushtype DC, mtechx = DC

DESCRIPTION

Mx4 with the Vx4++ drive control option is capable of controlling
brushtype DC, AC induction, and brushless DC motors. This command
allows the motor technology of each axis to be programmed.

Note: Mx4 with Vx4++ will not execute the MOTOR_TECH command
if the Vx4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Select brushless DC technology for axis one, brushtype DC for axis
two, and AC induction technology for axis four.

MOTOR_TECH (0xB, BRUSHLESS_DC, DC, AC_IND)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-147

NOTCH (option)

FUNCTION Implement Notch Filter at Controller Output

EXECUTION 200 microseconds

SYNTAX NOTCH (n, freqx, qx)

USAGE DSPL (Motion), Host (command code: 8Eh*)

Note: This RTC code (8Eh) is the same as the one used with
LOW_PASS, therefore one option (either NOTCH or LOW_PASS)
can be used at any time.

ARGUMENTS

n bit coding of the only specified axis
freqx unsigned value specifying the notch filter frequency for

axis x
 0  freqx  1650 Hz

qx unsigned value specifying the notch filter quality factor

for axis x
 qx = 1 ~25% bandwidth filter
 qx = 2 ~10% bandwidth filter

When used in DSPL, the arguments freqx and qx may be selected as
variables.

DESCRIPTION

This command implements a notch filter at the controller output for the
specified axis.

V

K
K

P

n

d
i

n
_

+ +

+

+ +
_

Sampling Period

P ACTUAL

nV̂

K f

Kp

Kalman
Filter

K Limiti

to DACOutput
Loop Gain

Notch
Filter

Mx4 Block Diagram with Notch Filter

DSPL Command Set

8-148

NOTCH cont.

The notch filter implements the transfer function:

G s
s

s s

n
n

Q n

() 


 

2 2

2 2





where,  n nf 2 and fn = notch frequency

The frequency and bandwidth of the notch is programmable.

Note: By programming a notch frequency of 0, the notch filter for
the specified axis is disabled.

SEE ALSO none

EXAMPLE: DSPL Programming Notch

1) Set a notch filter at 750 Hz with a narrow bandwidth (q = 2) for
axis 2 (see Fig. 4-3 below).

 NOTCH (0x2,750,2)

2) Disable the notch filter of axis 1.

 NOTCH (0x1,0,1)

Note: The Mx4 default setting for notch filter is no notch (or notch
disabled.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-149

NOTCH cont.

 (a)

 (b)

 Frequency Response of Discrete 750 Hz, Q=2 Notch Filter

DSPL Command Set

8-150

OFFSET

FUNCTION Amplifier Offset Cancellation

EXECUTION 200 microseconds

SYNTAX OFFSET (n)

USAGE DSPL (Motion), Host (command code: 5Fh)

ARGUMENTS

n bit coding the ONLY axis involved

DESCRIPTION

This command minimizes the offset generated by the D/A Converter
(DAC). Upon completion of offset tuning, an interrupt is generated to
the host. The condition is recorded in DPR interrupt status register
location 009h. DPR status register location 00Ch will identify the axis
responsible. Bit 6 of DPR locations [Mx4:7FEh] [Mx4 Octavia:1FFEh]
is also set.

The interrupt condition is also axis bit-coded in bits 0-3 of the DSPL
OFFSET_REG bit register.

Note: OFFSET may be run with only one axis at a time. The status of
the remaining three axes is not affected by running OFFSET.

To run OFFSET, the following steps should be followed for the
corresponding axis:

1. The axis should be in closed loop with optimal gains set.
2. Ki must be non zero for the axis.
3. The axis should be 'stopped', with no motion commands in

progress.
4. Start OFFSET with the specified axis.
5. Offset adjust is complete when a host interrupt is generated.

SEE ALSO CTRL

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-151

OFFSET cont.

APPLICATION

Most servo amplifiers on the market present an input offset voltage
problem that is undesirable for an accurate positioning application.
Using OFFSET you may neutralize amplifier offset. To make this
happen, you must:

1. enable OFFSET for the axis whose offset is to be

neutralized, and
2. use a non-zero Ki gain that maintains stability and zeros

position error. (It is assumed that other control gains are
selected such that the system is stable.)

Position error is integrated via the integral channel until position error
is forced to zero. In the absence of amplifier offset, the DAC voltage
that would have achieved zero position error is zero. Any non-zero
DAC value is due to an error caused by amplifier offset voltage. Mx4
measures the voltage, reports satisfactory completion of the OFFSET
command (generates an interrupt) and uses this measured voltage value
to neutralize offset throughout the entire control operation (until
machine is turned off). Due to the variable nature of amplifier offset,
offset calibration may be necessary any time the machine is turned on.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT () ;put system in a position loop, make sure integral

;gain is non-zero
.
.
OFFSET ()

EXAMPLE

After verifying that OFFSET Steps 1-3 (see DESCRIPTION, above) have
been followed, do offset tuning for axis 3.

 OFFSET (0x4)

DSPL Command Set

8-152

OUTGAIN

FUNCTION Output Loop Gain

EXECUTION 200 microseconds

SYNTAX OUTGAIN (n, m1, ... , m8)

USAGE DSPL (Motion), Host (command code: 81h)

ARGUMENTS

n bit coding of the specified axis(es)
mx value which defines the output gain for axis x

m=0 gain=1
m=1 gain=2
m=2 gain=4
m=3 gain=8
m=4 gain=16

When used in DSPL, argument mx may be selected as a variable.

DESCRIPTION

This command is used to set the gain for the output of the position
loops. The default m is set to zero (gain = 1).

Note: Please see block diagram with CTRL command.

SEE ALSO CTRL

APPLICATION

In applications where the number of position encoder counts (per
mechanical revolution of the shaft) is low, lack of resolution in the
feedback path will manifest itself as a low gain. This may be
compensated for by a loop gain adjustment. In practice, this command
may use an argument greater than 1 if the encoder line number is less
than 1000.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-153

OUTGAIN cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
OUTGAIN ()

EXAMPLE

Program output loop gains of eight for axis 3 and two for axis 4.

 OUTGAIN (0xC,3,1)

DSPL Command Set

8-154

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-155

OVERRIDE

FUNCTION Feedrate override for CIRCLE/LINEAR

EXECUTION 10 microseconds

SYNTAX OVERRIDE (Val)

USAGE DSPL (PLC, Motion), Host (command code:8Bh)

ARGUMENTS

 Val Feedrate override multiplier

 0.1  Val  10

 When used in DSPL, argument Val may be selected as a variable.

DESCRIPTION

This command is used to set the feedrate override for the CIRCLE and
LINEAR related commands.

SEE ALSO CIRCLE, LINEAR_MOVE, LINEAR_MOVE_S, LINEAR_MOVE_T

APPLICATION

 none

EXAMPLES

Set a feedrate override of 4x.

OVERRIDE (4.0)

DSPL Command Set

8-156

PI IDENTIFIER

IDENTIFIER DSPL Constant representing 

USAGE DSPL (PLC, Motion)

DESCRIPTION

The identifier PI is a DSPL reserved word that provides a floating point
approximation to the value  (3.14159265).

EXAMPLES

The identifier PI can be used as follows:

 to replace constant values in arithmetic expressions:

 VAR3 = PI
 VAR4 = 2 * PI
 VAR9 = PI - 2

 to specify the value of an argument in a DSPL function:

 VAR1 = SIN(PI)

 to replace a constant value in a conditional expression:

 WAIT_UNTIL(VAR12 > PI)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-157

POS1, …, POS8 IDENTIFIER

IDENTIFIER Actual Position State Variable

USAGE DSPL (PLC, Motion)

DESCRIPTION

An actual position state variable holds a 32-bit two’s complement
integer value that represents the current position (in encoder edge
counts) of the specified axis.

Name Description

POS1 axis 1 actual position
POS2 axis 2 actual position
POSx axis x actual position
.
.

POS8 axis 8 actual position

SEE ALSO CPOS1, ERR1, INDEX_POS1, PROBE_POS1

EXAMPLE

The actual position state variables can be used as follows:

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR1 = POS2 + VAR3

 as one of the arguments in a DSPL conditional expression:

 IF(POS1 <= VAR2)

DSPL Command Set

8-158

POSBRK_OUT

FUNCTION Set Outputs After Position Breakpoint Interrupt

EXECUTION 50 microseconds

SYNTAX [Mx4]

POSBRK_OUT (n, outponn1, outpoffn1, ...)

 [Mx4 Octavia]

POSBRK_OUT (n, outponn1, outponn2, outpoffn1,
outpoffn2, ...)

USAGE DSPL (Motion), Host (command code: 7Dh)

ARGUMENTS

n bit coding of the specified axis(es)
outponx1 bit coding the outputs to turn ‘on’ upon occurrence of

position breakpoint interrupt (EN_POSBRK) for axis x.

if bit=0 no change in output status
if bit=1 output = LOW TTL voltage

bit 15 OUT15 output
bit 14 OUT14 output
bit 13 OUT13 output
bit 12 OUT12 output
bit 11 OUT11 output
bit 10 OUT10 output
bit 9 OUT9 output
bit 8 OUT8 output
bit 7 OUT7 output
bit 6 OUT6 output
bit 5 OUT5 output
bit 4 OUT4 output
bit 3 OUT3 output
bit 2 OUT2 output
bit 1 OUT1 output
bit 0 OUT0 output

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-159

POSBRK_OUT cont.

outponx2 bit coding the outputs to turn ‘on’ upon occurrence of

position breakpoint interrupt (EN_POSBRK) for axis x.

if bit=0 no change in output status
if bit=1 output = LOW TTL voltage

bit 15 OUT31 output
bit 14 OUT30 output
bit 13 OUT29 output
bit 12 OUT28 output
bit 11 OUT27 output
bit 10 OUT26 output
bit 9 OUT25 output
bit 8 OUT24 output
bit 7 OUT23 output
bit 6 OUT22 output
bit 5 OUT21 output
bit 4 OUT20 output
bit 3 OUT19 output
bit 2 OUT18 output
bit 1 OUT17 output
bit 0 OUT16 output

DSPL Command Set

8-160

POSBRK_OUT cont.

outpoffx1 bit coding the outputs to turn ‘off’ upon occurrence of

position breakpoint interrupt (EN_POSBRK) for axis x.

if bit=0 no change in output status
if bit=1 output = HIGH TTL voltage

bit 15 OUT15 output
bit 14 OUT14 output
bit 13 OUT13 output
bit 12 OUT12 output
bit 11 OUT11 output
bit 10 OUT10 output
bit 9 OUT9 output
bit 8 OUT8 output
bit 7 OUT7 output
bit 6 OUT6 output
bit 5 OUT5 output
bit 4 OUT4 output
bit 3 OUT3 output
bit 2 OUT2 output
bit 1 OUT1 output
bit 0 OUT0 output

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-161

POSBRK_OUT cont.

outpoffx2 bit coding the outputs to turn ‘off’ upon occurrence of

position breakpoint interrupt (EN_POSBRK) for axis x.

if bit=0 no change in output status
if bit=1 output = HIGH TTL voltage

bit 15 OUT31 output
bit 14 OUT30 output
bit 13 OUT29 output
bit 12 OUT28 output
bit 11 OUT27 output
bit 10 OUT26 output
bit 9 OUT25 output
bit 8 OUT24 output
bit 7 OUT23 output
bit 6 OUT22 output
bit 5 OUT21 output
bit 4 OUT20 output
bit 3 OUT19 output
bit 2 OUT18 output
bit 1 OUT17 output
bit 0 OUT16 output

When used in DSPL, arguments outpon and outpoff may be selected as
variables.

DESCRIPTION

This command enables the output status of selected outputs to be
activated by the occurrence of a position breakpoint interrupt
(EN_POSBRK) for a specified axis. The POSBRK_OUT need only be
executed once (ie: during initialization) unless the on/off output status
desired changes. The specified outputs will change state as
programmed through the outponx and outpoffx arguments when an axis
(axis x) generates a position breakpoint interrupt. The position
breakpoint interrupt (EN_POSBRK) must be enabled for the output status
changes to occur.

DSPL Command Set

8-162

POSBRK_OUT cont.

SEE ALSO EN_POSBRK, OUTP_OFF, OUTP_ON

APPLICATION

This command can be used for an output operation where the output
status must be tightly coupled to the position of one or more axes.

Command Sequence Example
EN_POSBRK ;enable the pos breakpoint int for specified axis(es)
POSBRK_OUT ;set the desired output status changes

EXAMPLE

If a position breakpoint interrupt occurs on axis 1, turn on OUT0-OUT3
and turn off OUT4.

POSBRK_OUT (0x1, 0x000F, 0x0000, 0x0010, 0x0000)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-163

POS_PRESET

FUNCTION Preset Position Counter

EXECUTION 200 microseconds

SYNTAX POS_PRESET (n, pset1, ... , pset8)

USAGE DSPL (Motion), Host (command code 68h)

ARGUMENTS

n bit coding of the specified axis(es)
psetx position counter preset value for axis x

 -2147483648  psetx  2147483647 counts

When used in DSPL, argument psetx may be selected as a variable.

DESCRIPTION

This command will define the present position point for the axes
specified.

Note: POS_PRESET will automatically disable the position breakpoint
interrupt (if enabled). POS_PRESET should be executed only
when the axes specified are not in motion.

SEE ALSO POS_SHIFT, EN_POSBRK

APPLICATION

This command is useful when the position counter must be forced to a
new value. POS_PRESET may be used in the establishment of a new
reference position. Please also see POS_SHIFT.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Preset the axis 1 and axis 4 positions to 20000 and -45999 counts,
respectively.

 POS_PRESET (0x9,20000,-45999)

DSPL Command Set

8-164

POS_SHIFT

FUNCTION Position Reference Shift

EXECUTION 200 microseconds

SYNTAX POS_SHIFT (n, psft1, ... , psft8)

USAGE DSPL (Motion), Host (command code: 5Dh)

ARGUMENTS

n bit coding of the specified axis(es)
psftx position reference value for axis x

 -2147483648  psftx  2147483647

When used in DSPL, the argument psftx may be selected as a variable.

DESCRIPTION

This command will shift the present position for the axes specified.

Note: POS_SHIFT will automatically disable the position breakpoint
interrupt (if enabled) of the specified axes.

SEE ALSO POS_PRESET, EN_POSBRK

APPLICATION

This command may be used in homing a linear system based on index
pulse position recording. Adding offset position (in encoder edge
counts) to an already recorded position, presets position to a new value
without losing position integrity (i.e., no counter information is lost).
See also EN_INDEX and POS_PRESET.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

The current axis one position is 45000 counts. Shift the axis 1 position
to 50000 counts. The current axis 3 position is 55000 counts. Shift the
axis 3 position to 50000 counts.

 POS_SHIFT (0x5,5000,-5000)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-165

PRINT Acc4 option command

FUNCTION Write (send) value to terminal

EXECUTION 200 microseconds

SYNTAX PRINT (value)

USAGE DSPL (Motion)

ARGUMENTS

value 32-bit two’s complement constant or (integer) contents of
specified DSPL variable.

DESCRIPTION

The PRINT command is used to write (send) a value to the ASCII
terminal display. The ASCII transmission to the terminal takes the
format:

 (value) + <CR> + <LF> + ’>’

The value displayed is an integer with 3 implied fractional digits. For
example, 123456 is the value 123.456.

EXAMPLE

Write the value 100.45 to the ASCII terminal.

PRINT (100450)

Write the value contained in DSPL variable VAR62 to the ASCII
terminal.

PRINT (VAR62)

DSPL Command Set

8-166

PRINTS Acc4 option command

FUNCTION Write (send) ASCII String to Terminal

EXECUTION 200 microseconds

SYNTAX PRINTS (“string”)

USAGE DSPL (Motion)

ARGUMENTS

string character string up to 26 characters in lengths. The string
must consist of the printable ASCII characters (32-126).

DESCRIPTION

The PRINT command is used to write (send) a character string to the
ASCII transmission to the terminal takes the format:

 (string) + <CR> + <LF> + ’>’

EXAMPLE

Write “hello world” to the ASCII terminal.

PRINT (“hello world”)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-167

PROBE_POS1, …, PROBE_POS8 IDENTIFIER

IDENTIFIER Probe Position State Variable

USAGE DSPL (PLC, Motion)

DESCRIPTION

A probe position state variable holds a 32-bit two’s complement integer
value that represents the probe position (in encoder edge counts) of the
specified axis.

Name Description

PROBE_POS1 axis 1 probe position
PROBE_POS2 axis 2 probe position
PROBE_POSx axis x probe position
.
.
PROBE_POS8 axis 8 probe position

SEE ALSO CPOS1, ERR1, INDEX_POS1, POS1

EXAMPLE

The probe position state variables can be used as follows:

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR1 = PROBE_POS2 + 1000

 as one of the arguments in a DSPL conditional expression:

 WHILE(PROBE_POS4 > VAR42)

DSPL Command Set

8-168

PWM_FREQ Vx4++ option command

FUNCTION Set Pulse Width Modulation (PWM) Frequency

EXECUTION 200 microseconds

SYNTAX PWM_FREQ (m, pwm1, pwm2)

USAGE DSPL (Motion), Host (command code: 7Fh)

ARGUMENTS

m bit coding of the specified axis groups

 m = 0x3 set axes one, two PWM frequency
 m = 0xC set axes three, four PWM frequency
 m = 0xF set axes one, two, three, four PWM
 frequency

pwm1 PWM frequency for axes one, two
pwm2 PWM frequency for axes three, four

 1.0  pwmx  31.0 kHz

DESCRIPTION

The frequency of the Vx4++ pulse width modulation outputs may be
programmed via the PWM_FREQ command. The outputs may be
programmed in axis pairs.

Note: Mx4 with Vx4++ will not execute the PWM_FREQ command if
the Vx4_BLOCK command is active for the axes in question.

SEE ALSO Vx4_BLOCK

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Set a PWM frequency of 15.4 kHz for axes three and four.

PWM_FREQ (0xC, 15.4)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-169

REL_AXMOVE

FUNCTION Relative Position Axis Move with Trapezoidal Trajectory

EXECUTION 200 microseconds

SYNTAX REL_AXMOVE (n, acc1, pos1, vel1, ... , acc8, pos8,
 vel8)

USAGE DSPL (Motion), Host (command code: B7h)

ARGUMENTS

n bit coding of the specified axis(es)
accx unsigned value specifying the maximum halting

acceleration (deceleration) for axis x

 0  accx  1.999969 counts/(200s)2

posx incremental position for axis x

 -805306367  posx  805306367 counts

velx unsigned target velocity for axis x

 0  velx 255.99998 counts/200s

When used in DSPL, arguments accx, posx and velx may be selected as a
variable.

DESCRIPTION

The REL_AXMOVE command is similar to the AXMOVE command with the
exception that relative (or incremental) position is specified, rather than
an end position as with AXMOVE.

SEE ALSO AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE_S,
REL_AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 2 is unknown. It is known,
however, that we want to move axis 2 8000 counts in the negative
direction (that is, -8000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2 and
a target slew rate of -3.5 counts/200µs.

 REL_AXMOVE (0x2,1.0,-8000,3.5)

DSPL Command Set

8-170

REL_AXMOVE_S

FUNCTION Relative S-Curve Axis Move with Trapezoidal Trajectory

EXECUTION 200 microseconds

SYNTAX REL_AXMOVE_S (n, acc1, pos1, vel1, ... , acc8, pos8,
vel8)

USAGE DSPL (Motion), Host (command code: 75h)

ARGUMENTS

n bit coding of the specified axis(es)
accx unsigned value specifying the acceleration/deceleration

for axis x

 0  accx  1.999969 counts/(200s)2

posx relative position for axis x

 -2147483648  posx  2147483647 counts

velx unsigned target velocity for axis x

 0  velx  255.99998 counts/200s

When used in DSPL, arguments accx, posx, and velx may be selected as
variables.

DESCRIPTION

The REL_AXMOVE_S RTC allows for s-curve command generation
with relative (to current position) endpoint position, slew rate velocity
and acceleration for each axis. This command is suitable for linear
moves where s-curve acceleration is desired.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-171

REL_AXMOVE_S cont.

accx

v

posx

t

velx

2*accx

AXMOVE

AXMOVE_S

The figure above illustrates the velocity profile of the REL_AXMOVE_S
along with the linear velocity ramp of the REL_AXMOVE command.
With REL_AXMOVE_S, the acceleration will reach a value of 2*accx
for a maximum (see above figure).

SEE ALSO AXMOVE, AXMOVE_S, AXMOVE_T, REL_AXMOVE,
REL_AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 2 is unknown. It is known,
however, that we want to move axis 2 8000 counts in the negative
direction (that is, -8000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2 and
a target velocity of (unsigned) 3.5 counts/200µs.

 REL_AXMOVE_S (0x2, 1.0, -8000, 3.5)

DSPL Command Set

8-172

REL_AXMOVE_SLAVE

FUNCTION Superimposes a Relative Axis Move onto a Slave Engaged in
Gearing

EXECUTION 200 microseconds

SYNTAX REL_AXMOVE_SLAVE (n, acc, rel_pos, rel_vel)

USAGE DSPL (Motion), Host (command code: AEh)

ARGUMENTS

n bit coding the axes involved
acc relative move acceleration
rel_pos position value relative to current position
rel_vel velocity value relative to current velocity

When used in DSPL, arguments acc, rel_pos and rel_vel may be
selected as variables.

DESCRIPTION

This command is similar to AXMOVE with two exceptions. First, it is
relative not absolute; and second, it works only on the slave axis(es)
involved in electronically geared or cam applications. This command
allows the slave to momentarily disengage from the gearing process and
compensate for its position short comings.

SEE ALSO CAM, CAM_OFF, CAM_OFF_ACC, CAM_POS, CAM_PROBE, GEAR,
GEAR_OFF, GEAR_OFF_ACC, GEAR_POS, GEAR_PROBE, SYNC

APPLICATION

General master/slaving in particular flying shear applications can
benefit from this instruction. Flying shear with registration marks is
handled similarly to that of synchronous cutting. That is, the measured
cutting error is used in the next cycle as an added function to
compensate for the motion's shortcomings.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-173

Slave Accel.

Slave Jerk

Number of Points

Time

Time

Master Speed

Slave Speed

Gear Ratio

One Full CAM Cycle

REL_AXMOVE

REL_AXMOVE_SLAVE cont.

DSPL Command Set

8-174

REL_AXMOVE_T

FUNCTION Time-Based Relative Axis Move with Trapezoidal Trajectory

EXECUTION 200 microseconds

SYNTAX REL_AXMOVE_T (n, acc1, pos1, tm1, ... , acc8, pos8,
tm8)

USAGE DSPL (Motion), Host (command code: 78h)

ARGUMENTS

n bit coding of the specified axis(es)
accx unsigned value specifying the acceleration/deceleration

for axis x

 0  accx  1.999969 counts/(200s)2

posx relative position for axis x

 -2147483648  posx  2147483647 counts

tmx motion time for axis x

 0  tmx  5000000 (200s)

Note: The time argument, tmx, is an unsigned value with a unit of
200usec.

When used in DSPL, arguments accx, posx, and tmx may be selected as
variables.

DESCRIPTION

The REL_AXMOVE_T RTC allows for trapezoidal command generation
with relative (to current position) endpoint position, acceleration, and
time to complete the move for each axis. This

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-175

REL_AXMOVE_T cont.

command is suitable for linear moves where relative endpoint position
and motion time are the specifying parameters.

The REL_AXMOVE_T command is similar to REL_AXMOVE, with the
exception that the velocity argument is replaced with a time argument.
REL_AXMOVE_T will automatically calculate a suitable slew rate
velocity to achieve the programmed relative endpoint position in the
programmed amount of time, following a trapezoidal velocity profile
(similar to REL_AXMOVE).

SEE ALSO REL_AXMOVE, REL_AXMOVE_S, AXMOVE, AXMOVE_S,
AXMOVE_T, STOP

EXAMPLE

The current position (commanded) of axis 4 is unknown. It is known,
however, that we want to move axis 4 10000 counts in the negative
direction (that is, -10000 counts from the current position). The move
should be accomplished with an acceleration of 1.0 counts/(200µs)2 and
be completed in 350msec (1750*200µsec).

 REL_AXMOVE_T (0x8, 1.0, -10000, 1750)

DSPL Command Set

8-176

 RESET

FUNCTION Reset Mx4

EXECUTION 200 microseconds

SYNTAX RESET (AAh, AAh)

USAGE DSPL (Motion), Host (command code: 72h)

ARGUMENTS

AAh reset signature byte

DESCRIPTION

This command brings the servo controller card back to power-up state.
Upon Mx4's reset completion, a host interrupt is generated via bit 4 of
DPR locations [Mx4:7FEh] [Mx4 Octavia:1FFEh].

SEE ALSO none

APPLICATION

From time to time all systems may have to be software reset to allow for
an initialization.

Command Sequence Example
No preparation is required before running this instruction.

EXAMPLE

Reset the Mx4 controller card.

 RESET (0xAA, 0xAA)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-177

RET

FUNCTION Return from Subroutine

EXECUTION 10 microseconds

SYNTAX RET ()

USAGE DSPL (Motion)

ARGUMENTS

none

DESCRIPTION

This instruction is used to return from a called subroutine to the
program which initiated the CALL. The program flow returns to the
calling DSPL program after the RET instruction. The RET command is
the last instruction of a subroutine.

SEE ALSO CALL

APPLICATION

See Application Notes

EXAMPLE

Return from a subroutine.

 RET ()

DSPL Command Set

8-178

RUN_M_PROGRAM

FUNCTION Initiate DSPL Program Execution

EXECUTION 10 microseconds

SYNTAX RUN_M_PROGRAM (program)
or
RUN_M_PROGRAM (program1, program2)

USAGE DSPL (PLC)

ARGUMENTS

program The program label of the Motion program to be run.

DESCRIPTION

Mx4 can run up to two Motion Programs on Mx4 and three on Mx4
Octavia simultaneously. If the user attempts to run more than two
motion programs or Mx4's program buffer is full, an interrupt is
generated to the host. Bit 0 of location 0Fh in the Dual Port RAM is set
to 1 and bit 5 of the interrupt register 2 is also set.

SEE ALSO STOP_ALL_M_PROGRAM, STOP_M_PROGRAM

APPLICATION

See DSPL Application Notes

EXAMPLE

Begin execution of the DSPL programs "PROG_1" and "PROG_2".

 RUN_M_PROGRAM (PROG_1)
 RUN_M_PROGRAM (PROG_2)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-179

SIGN

FUNCTION Find the Sign of a Constant or a Variable Value.

EXECUTION 10 microseconds

SYNTAX SIGN(valu) or -SIGN(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant
 or a
 variable (VAR1 through VAR128)

DESCRIPTION

This function finds the sign of a constant or a variable value. The value
returned is set as follows:
 SIGN(valu) = -1 if valu < 0
 SIGN(valu) = 0 if valu = 0
 SIGN(valu) = +1 if valu > 0.
If a minus sign appears to the left of the SIGN function, the number
returned by SIGN is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR55 = SIGN(-88.43)

SEE ALSO ABS, FRAC, INT, SQRT

EXAMPLE

The first example finds the sign of the value stored in VAR13 and stores
the result in VAR47:

 VAR47 = SIGN(VAR13)

The second example finds the sign of -71.482 and stores the result (-1)
in VAR31:

 VAR31 = SIGN(-71.482)

DSPL Command Set

8-180

SIN

FUNCTION Calculate the Sine of a Constant or a Variable Value.

EXECUTION 75 microseconds

SYNTAX SIN(valu) or -SIN(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant real number
 or a
 variable (VAR1 through VAR128)

DESCRIPTION

This mathematical function calculates the sine of a constant or a
variable value specified in radians. If valu is a constant and a minus
sign appears to the left of the SIN function, the result of the sine
calculation is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR34 = SIN(-1.72)

SEE ALSO ARCTAN, COS, TAN

EXAMPLE

The first example calculates the sine of the value stored in VAR17 and
stores the result in VAR42:

 VAR42 = SIN(VAR17)

The second example finds the sine of 2.45 radians and stores the result
(0.637764702) in VAR37:

 VAR37 = SIN(2.45)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-181

SINE_OFF

FUNCTION Turn Off Circular Interpolation Sine Table

EXECUTION 10 microseconds

SYNTAX SINE_OFF (n)

USAGE DSPL (PLC, Motion)

ARGUMENTS

n bit coding of the axes for which sine tables will be
disabled

DESCRIPTION

This instruction turns off (clears) the Mx4 position and velocity sine
tables involved in circular interpolation. This way, the machine
compensation table will be the only means of contouring.

SEE ALSO CIRCLE, SINE_ON, TABLE_OFF, TABLE_ON

APPLICATION

See Application Notes

EXAMPLE

Turn the sine table off for axes three and four.

 SINE_OFF (0xC)

DSPL Command Set

8-182

SINE_ON

FUNCTION Turn On Circular Interpolation Sine Table

EXECUTION 10 microseconds

SYNTAX SINE_ON (n)

USAGE DSPL (PLC, Motion)

ARGUMENTS

n bit coding of the axes for which sine table is enabled

DESCRIPTION

This instruction turns on (reactivates) the Mx4 position and velocity
sine tables involved in circular interpolation. This instruction is
executed after the execution of TURN OFF SINE TABLE.

SEE ALSO CIRCLE, SINE_OFF, TABLE_OFF, TABLE_ON

APPLICATION

See Application Notes

EXAMPLE

Enable the sine table for axes one, two, and three.

 SINE_ON (0x7)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-183

SQRT

FUNCTION Calculate the Positive Square Root of a Constant or Variable
 Value.

EXECUTION 75 microseconds

SYNTAX SQRT(valu) or -SQRT(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant real number >= 0
 or a
 variable (VAR1 through VAR128)

DESCRIPTION

This mathematical function calculates the square root of a constant or a
variable value. If valu is a constant, it must be a constant >= 0
otherwise an error will be returned. If valu is a variable, the function
will return the square root of the value stored in the variable if that
value >= 0. Otherwise a value of zero is returned. If valu is a constant
and a minus sign appears to the left of the SQRT function, the result of
the square root calculation is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR2 = SQRT(32.97)

SEE ALSO ABS, FRAC, INT, SIGN

EXAMPLE

The first example calculates the square root of the value stored in VAR17
and stores the result in VAR42:

 VAR42 = SQRT(VAR17)

The second example finds the square root of 12.75 and stores the
negated result (-3.570714214) in VAR16:

 VAR16 = -SQRT(12.75)

DSPL Command Set

8-184

START

FUNCTION Start Contouring Motion

EXECUTION 10 microseconds

SYNTAX START (n)

USAGE DSPL (Motion), Host (command code: 6Dh)

ARGUMENTS

n bit coding of the specified axis(es)

DESCRIPTION

This command starts the motion (simultaneously) for the specified axes
included in 2nd order and cubic spline contouring. START applies to
contouring only.

Note: START will be ignored if contouring is in progress.

SEE ALSO STOP, VECCHG

APPLICATION

This command must be used in all 2nd order and ring buffer cubic
spline contouring applications to start contouring with selected axes.

For 2nd Order Contouring Only
This command can be overwritten by VECCHG which redefines the axes
involved in the contouring process. For example, START starts the
contouring of axes 1, 3, and 4. If in the course of contouring, a VECCHG
is received (with argument) specifying axes 1, 2, and 3, the new
contouring points in the ring buffer will be used for the newly defined
axes. Please also see VECCHG.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-185

START cont.

Command Sequence Example
. ;load ring buffer with positions and velocities
.
MAXACC () ;make sure system can stop
CTRL () ;set the gains
KILIMIT ()
BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the breakpoint in the ring buffer
.
.
START () ;start contouring

EXAMPLE

Start contouring motion in axes 2, 3, and 4.

 START (0xE)

DSPL Command Set

8-186

STEPPER_ON Stp4 option command

FUNCTION Select Servo/Stepper Axes

EXECUTION 200 microseconds

SYNTAX STEPPER_ON (n)

USAGE DSPL (Motion), Host (command code: 8Dh)

ARGUMENTS

n bit coding the axes selected as stepper axes (the remaining
axes are servo axes)

DESCRIPTION

This command requires the Stp4 add-on card. STEPPER_ON allows the
user to select the axes which are stepper control axes. The axes not
selected by the n argument remain servo control axes.

EXAMPLE

Select axes 1 and 2 as stepper control axes.

 STEPPER_ON (0x3)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-187

STOP

FUNCTION Stop Motion

EXECUTION 75 microseconds

SYNTAX STOP (n)

USAGE DSPL (Motion), Host (command code: 6Eh)

ARGUMENTS

n bit coding of the specified axis(es)

DESCRIPTION

This command stops the motion of all specified axes simultaneously.
To stop motion, the servo control card uses the programmed values for
maximum acceleration / deceleration. Upon receipt of STOP, the servo
controller aborts the current command. The host is responsible for
clearing the ring buffer of any remaining commands if the axis(es)
stopped was involved in contouring motion.

Note 1: An emergency stop signal, ESTOP_ACC, will perform a
hardware stop. This is an open collector input signal which is
active low and is shared between all of the controller cards.

Note 2: STOP will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g., MAXACC not issued).

If an axis is halting to a stop from a previously executed STOP RTC or
active ESTOP_ACC input, Mx4 will ignore any motion commands
(AXMOVE, REL_AXMOVE, START or VELMODE) and will report an "RTC
Command Ignored" interrupt to the host. The above motion commands
should not be sent to Mx4 for a halting axis until the axis motion has
come to a stop.

SEE ALSO MAXACC, START

DSPL Command Set

8-188

STOP cont.

APPLICATION

For all applications involving bringing speed to zero in the quickest
possible manner.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the breakpoint in the ring buffer
.
.
STOP () ;stop the motion
. ;upon completion of stop (command) trajectory
. ;Mx4 generates motion complete interrupt

EXAMPLE

Bring the motion of axes 1 and 4 to a halt.

 STOP (0x9)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-189

STOP_ALL_M_PROGRAM

FUNCTION Terminate Execution of All DSPL Motion Programs

EXECUTION 200 microseconds

SYNTAX STOP_ALL_M_PROGRAM ()

USAGE DSPL (PLC, Motion)

ARGUMENTS

none

DESCRIPTION

This instruction terminates the execution of all running DSPL Motion
programs. DSPL Motion programs may be re-initiated via additional
RUN_M_PROGRAM commands in the PLC program.

The STOP_ALL_M_PROGRAM command will also stop the motion (if any)
of all axes with the programmed MAXACC acceleration.

SEE ALSO MAXACC, RUN_M_PROGRAM, STOP_M_PROGRAM

APPLICATION

See Application Notes

EXAMPLE

Stop the execution of all running Motion programs.

 STOP_ALL_M_PROGRAM ()

DSPL Command Set

8-190

STOP_M_PROGRAM

FUNCTION Terminate Execution of DSPL Motion Program(s)

EXECUTION 50 microseconds

SYNTAX STOP_M_PROGRAM (program)
 or
 STOP_M_PROGRAM (program1, program2)

USAGE DSPL (PLC, Motion)

ARGUMENTS

program The program label of the Motion program to be stopped

DESCRIPTION

The STOP_M_PROGRAM command is used to stop the execution of selected
DSPL Motion programs. DSPL Motion programs may be re-initiated
via additional RUN_M_PROGRAM commands in the PLC program.

SEE ALSO RUN_M_PROGRAM, STOP_ALL_M_PROGRAM

APPLICATION

See Application Notes

EXAMPLE

Stop the execution of DSPL programs TEST1 and TEST2.

 STOP_M_PROGRAM (TEST1, TEST2)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-191

SYNC

FUNCTION Master / Slave Select

EXECUTION 10 microseconds

SYNTAX SYNC (m)

USAGE DSPL (motion), Host (command code: 87h)

ARGUMENTS

m selects the Master / Slave status of the Mx4 card

 m = 0 : Mx4 is configured as a Master
 m <> 0 : Mx4 is configured as a Slave

DESCRIPTION

If more than one Mx4 card is to be used in a system and card-to-card
synchronization is required, the SYNC command should be used. SYNC
allows multiple Mx4 cards to operate in synchronization within a
system by specifying a single Master and the remaining card(s) as
Slaves. If only one Mx4 is used in a host computer system, that Mx4
must be configured as a Master.

Note: Mx4 powers-up and resets to a default Master status.

In addition to configuring the Mx4 cards with SYNC (for multiple card
systems), a cable jumper must be included on the J5 connector of each
of the boards. The cable must be wired such that the MASTER signal
from the Master Mx4 connects to the SLAVE signal of each of the
Slave Mx4(s) (see Mx4 User’s Guide, Installing Your Mx4).

SEE ALSO none

DSPL Command Set

8-192

SYNC cont.

APPLICATION

This command is used in applications where tight coordination of more
than four axes (when using Mx4s) or eight axes (when using Mx4
Octavias) is required. This command essentially slaves several Mx4
cards to a single Master Mx4. Applications involving many axes
contouring may benefit from this command.

Command Sequence Example
This command must be executed immediately after the initialization.
Please remember that the default value for m is zero (i.e., the card is
initialized as a Master).

EXAMPLE

 Configure the Mx4 controller as a slave in a multi-Mx4
 synchronized system.

 SYNC (0x1)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-193

TABLE_OFF

FUNCTION Disable Position and Velocity Circular Interpolation
Compensation Tables

EXECUTION 10 microseconds

SYNTAX TABLE_OFF (n)

USAGE DSPL (PLC, Motion)

ARGUMENTS

n bit coding of the axes for which the position and velocity
compensation tables are disabled

DESCRIPTION

The TABLE_OFF command turns 'off' or disables the position and
velocity compensation tables for the specified axes. After a TABLE_OFF
command for an axis, any circular interpolation involving that axis will
use the sine tables only for the circular interpolation.

Note: Before executing a TABLE_OFF command, it is important that
the sine table for the axis is enabled.

SEE ALSO CIRCLE, SINE_ON, SINE_OFF, TABLE_ON

APPLICATION

See Application Notes

EXAMPLE

Disable the compensation tables for axes two, three, and four:

 TABLE_OFF (0xE)

DSPL Command Set

8-194

TABLE_ON

FUNCTION Enable Position and Velocity Circular Interpolation
Compensation Tables

EXECUTION 10 microseconds

SYNTAX TABLE_ON (n)

USAGE DSPL (PLC, Motion)

ARGUMENTS

n bit coding of the axes for which the position and velocity
compensation tables are enabled

DESCRIPTION

This instruction will compensate for velocity and position inaccuracies
or nonlinearities of the system's mechanical parts involved in circular
interpolation. The compensation tables must be downloaded to Mx4
before execution of the TABLE_ON command.

Note: Position and velocity compensation tables are 1024 locations
long. There is a corresponding position and velocity
compensation table for each axis. For both position and
velocity tables, each point is a 15-bit two's complement value,
hence it represents an absolute 14-bit value. Mx4 initializes
the tables’ values to zeros. If the table is loaded with m points,
where m is less than 1024, the remaining points will be zero.
If the table is loaded with more than 1024 values, the
additional points will be ignored.

SEE ALSO CIRCLE, SINE_ON, SINE_OFF, TABLE_OFF

APPLICATION

See Application Notes

EXAMPLE

Enable the compensation tables for axes two and four:

 TABLE_ON (0xA)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-195

TABLE_P, TABLE_V IDENTIFIER

IDENTIFIER DSPL Table

SYNTAX TABLE_P(index) = valu1

 TABLE_V(index) = valu2

 var = TABLE_P(index)

 var = TABLE_V(index)

USAGE DSPL (PLC, Motion)

ARGUMENTS

index 0 < constant integer value < 4095
 or
 a DSPL variable value (VAR1 through VAR128)

valu1 -2147483648  valu1  2147483647
 or
 a DSPL variable value (VAR1 through VAR128)

valu2 0  valu2  255.99998
 or
 a DSPL variable value (VAR1 through VAR128)

var DSPL variable value (VAR1 through VAR128)

DESCRIPTION

The DSPL tables TABLE_P and TABLE_v can be used to store integer and
fractional values in a DSPL program. Values in TABLE_P are stored in
the position format (32-bit two’s complement integer values), while
values in TABLE_V are stored in the velocity format (25-bit two’s
complement values sign extended to 32-bits with the least significant 16
bits representing the fractional value.)

Note The DSPL tables, cam, internal cubic spline, and
position/velocity compensation tables share overlapping data
space in Mx4.

DSPL Command Set

8-196

TABLE_P, TABLE_V cont. IDENTIFIER

Note The fractional portion of any values stored in TABLE_P will be
truncated. Values stored in TABLE_V can have a maximum
absolute value of 256.

EXAMPLES

The first example stores the value 12 (truncated from 12.3) into the
table at index 13:

 TABLE_P(13) = 12.3

The second example stores the value in VAR12 in the table at the
location indexed by the value in VAR1:

 TABLE_V(VAR1) = VAR12

The third example retrieves the value in the table at the location
indexed by the value in VAR17 and stores the value in VAR28:

 VAR28 = TABLE_V(VAR17)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-197

TABLE_SEL

FUNCTION Select Compensation Table

EXECUTION 50 microseconds

SYNTAX TABLE_SEL (n, tb1, ... , tb8)

USAGE DSPL (Motion), Host (command code: A2h)

ARGUMENTS

n bit coding the axes involved

tbx specifies the compensation table to be used for axis x

 1  tbx  8

DESCRIPTION

The TABLE_SEL command allows the user to arbitrarily select the
compensation table for the axis(es) in question. More than one axis may
use a compensation table.

SEE ALSO CIRCLE, TABLE_OFF, TABLE_ON

EXAMPLE

Axes 1 and 2 are to use compensation table 2, while axes 3 and 4 use
compensation table 1.

 TABLE_SEL (0xF,2,2,1,1)

DSPL Command Set

8-198

TAN

FUNCTION Calculate the Tangent of a Constant or a Variable Value.

EXECUTION 100 microseconds

SYNTAX TAN(valu)

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu A constant real number or a variable (VAR1 through
VAR128)

DESCRIPTION

This mathematical function calculates the tangent of a constant or a
variable value specified in radians. If valu is a constant and a minus
sign appears to the left of the TAN function, the result of the tangent
calculation is multiplied by -1.

Note: This function can only be used with a variable assignment
statement. For example:

VAR11 = TAN(1.163)

SEE ALSO ARCTAN, COS, SIN

EXAMPLE

The first example calculates the tangent of the value stored in VAR51
and stores the result in VAR14:

 VAR14 = TAN(VAR51)

The second example finds the tangent of -2.009 radians and stores the
result (2.134071211) in VAR24:

 VAR24 = TAN(-2.009)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-199

TIMER, TIMER1, …, TIMER4 IDENTIFIER

FUNCTION General Purpose DSPL Timer State Variable

SYNTAX [Mx4 / Mx42]

TIMER

[Mx4 Octavia]

TIMER1, TIMER2, TIMER3, TIMER4

USAGE DSPL (PLC, Motion)

DESCRIPTION

TIMER is a DSPL identifier, which in conjunction with TIMER_RESET
provides a general purpose DSPL timer with time increments of 200
µsec. TIMER may be reset to 0 via the TIMER_RESET command.

SEE ALSO TIMER_RESET

EXAMPLE

Implement a one second delay with TIMER on an Mx4.

 TIMER_RESET ()
 WAIT_UNTIL (TIMER >= 5000)

DSPL Command Set

8-200

TIMER_RESET

FUNCTION Reset General Purpose DSPL Timer

EXECUTION 10 microseconds

SYNTAX [Mx4 / Mx42]

TIMER_RESET ()

[Mx4 Octavia]

TIMER_RESET (n)

USAGE DSPL (PLC, Motion)

ARGUMENTS

n bit coding of specified timer(s) (only applies to Octavia)

DESCRIPTION

This command resets the single DSPL timer on an Mx4, or any of the
four timers on an Mx4 Octavia.

SEE ALSO TIMER, TIMER1, …, TIMER4

EXAMPLE

Implement a one second delay with TIMER on an Mx4.

 TIMER_RESET ()
 WAIT_UNTIL (TIMER >= 5000)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-201

TRQ_LIMIT

FUNCTION DAC Output Voltage Limit

EXECUTION 200 microseconds

SYNTAX TRQ_LIMIT (n, val1, ... , val8)

/USAGE DSPL (Motion), Host (command code: 5Bh)

ARGUMENTS

n bit coding of the specified axis(es)
valx DAC output voltage (abs) limit for axis x

 -10.0 <= valx <= 9.9997 volts

When used in DSPL, the argument valx may be selected as a variable.

DESCRIPTION

The TRQ_LIMIT command specifies a torque limit (by means of output
voltage limiting) value ranging from 0 volts (no output) to +/-10 volts
(full swing) with a resolution of approximately 0.3 millivolts.

The Mx4 controller powers-up and resets to a default torque limit value
allowing full output voltage swing.

SEE ALSO none

APPLICATION

This command can be used in applications where an axis torque needs
to be limited, such as packaging or material handling.

Command Sequence Example

No preparation is required before running this instruction.

EXAMPLE

Limit the output voltage swing for axis 2 to +/- 7.5 volts.

 TRQ_LIMIT (0x2, 7.5)

DSPL Command Set

8-202

VAR1, ..., VAR128 IDENTIFIER

IDENTIFIER DSPL Variable

USAGE DSPL (PLC, Motion)

DESCRIPTION

The 128 DSPL variables hold floating point real numbers that can be
stored, retrieved, and manipulated by the DSPL programmer.

EXAMPLES

The DSPL variables can be used to do the following:

 specify the value of an argument in a DSPL command or function:

 AXMOVE(0x1, VAR1, VAR23, VAR14)

 VAR1 = SQRT(VAR32)

 store constant numbers:

 VAR3 = -9385.38

 VAR5 = 0x34

 assign the value of one variable to another:

 VAR13= VAR29

 perform intermediate computations:

 VAR23 = VAR2 / 23.78

 VAR51 = VAR32 * VAR12

 retrieve/store a value from/to a DSPL tables (TABLE_P and
TABLE_V):

 VAR23 = TABLE_V(332)

 TABLE_P(123) = VAR2

 provide an index into one of the DSPL tables:

 TABLE_V(VAR7) = 3.75

 provide bit register functionality

 VAR4 = VAR55 & 0x1133

 specify one or both of the values in a conditional expression:

 WAIT_UNTIL(VAR12 > VAR50)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-203

VECCHG

FUNCTION 2nd Order Contouring Vector Change

EXECUTION 10 microseconds

SYNTAX VECCHG (n, m)

USAGE DSPL (Motion), Host (command code: 6Fh)

ARGUMENTS

n bit coding of the specified axis(es) involved
m value which represents the buffer position (in 8 byte

offsets from the start of the buffer) where the number of
axes involved in contouring must be changed to include
only those axes coded by n

DESCRIPTION

Upon the execution of this command, the 2nd order contouring task
assumes a new set of axes at the programmed pointer location.

Note: Three buffer levels are used to implement this instruction.

SEE ALSO START

APPLICATION

See START.

DSPL Command Set

8-204

VECCHG cont.

Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
BTRATE () ;set the block transfer rate
EN_BUFBRK () ;set the buffer breakpoint interrupt
.
.
START () ;start contouring for a selected number of axes
. ;based on buffer breakpoint interrupt transfer more
. ;points
VECCHG () ;use points in ring buffer for a new set of axes

EXAMPLE

Begin 2nd order contouring in axes 1, 2, and 3 after the 23rd segment
move command of the ring buffer.

 VECCHG (0x7,23)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-205

VECT4_PAR1, …, VECT4_PAR8 IDENTIFIER

IDENTIFIER Vx4++ Parameter

USAGE DSPL (PLC, Motion)

DESCRIPTION

With the Vx4++ option, Vx4++ state variables are available in Mx4s’
DSPL programming language. The source of the state variable is
selected with the VIEWVEC command.

Name Description

VECT4_PAR1 Vx4++ parameter 1
VECT4_PAR2 Vx4++ parameter 2
VECT4_PAR3 Vx4++ parameter 3
.
.

VECT4_PAR8 Vx4++ parameter 8

SEE ALSO VIEWVEC

EXAMPLE

The Vx4++ parameters can be used as follows:

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR12 = VECT4_PAR3 + 3000

 as one of the arguments in a DSPL conditional expression:

 WHILE(VECT4_PAR1 > 100000)

DSPL Command Set

8-206

VX4_BLOCK VX4++ option command

FUNCTION Blocks Vx4++ commands

EXECUTION 200 microseconds

SYNTAX VX4_BLOCK (m, blk1, blk2)

USAGE DSPL (Motion), Host (command code: 84h)

ARGUMENTS

m bit coding of the specified axis groups

 m = 0x3 axes one, two
 m = 0xC axes three, four
 m = 0xF axes one, two, three, four

blk1 block code for axes one, two
blk2 block code for axes three, four

 blkx = 0 Vx4++ block disabled
 blkx = 1 Vx4++ block enabled

DESCRIPTION

This command is used to block some of the VX4++ commands so that
those commands may not be accidentally executed. The user is
responsible for disabling the block command in order to execute one of
the commands listed below (SEE ALSO).

SEE ALSO CURR_LIMIT, CURR_OFFSET, ENCOD_MAG,
 MOTOR_TECH, PWM_FREQ

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Enable the Vx4++ command blocking for all four axes.

VX4_BLOCK (0xF, 1, 1)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-207

VEL1, …, VEL8 IDENTIFIER

IDENTIFIER Actual Velocity State Variable

USAGE DSPL (PLC, Motion)

DESCRIPTION

A actual velocity state variable holds a value that represents the current
velocity (in encoder edge counts/200s) of the specified axis:

Name Description

VEL1 axis 1 actual velocity
VEL2 axis 2 actual velocity
VELx axis x actual velocity
.
.
VEL8 axis 8 actual velocity

SEE ALSO CVEL1

EXAMPLE

The actual velocity state variables can be used as follows:

 as one of the values used in conjunction with a DSPL arithmetic

operation:

 VAR12 = VEL2 - 1.5

 as one of the arguments in a DSPL conditional expression:

 WHILE(VEL4 > 1.5)

DSPL Command Set

8-208

VELMODE

FUNCTION Velocity Mode

EXECUTION 100 microseconds

SYNTAX VELMODE (n, vel1, ... , vel8)

USAGE DSPL (Motion), Host (command code: 70h)

ARGUMENTS

n bit coding of the specified axis(es)
velx target velocity for axis x

 -256  velx  255.99998 counts/200s

When used in DSPL, argument velx may be selected as a variable.

DESCRIPTION

Upon the execution of this command, a velocity loop for the specified
axes will be closed. The velocity loop uses the same gains as those
specified using the control law command. VELMODE uses the MAXACC
maximum acceleration / deceleration value to accelerate or decelerate
to the desired velocity.

Note : VELMODE will be ignored if the maximum acceleration /
deceleration is equal to zero (e.g., MAXACC not issued).

SEE ALSO MAXACC

APPLICATION

This instruction is useful in all general purpose velocity control
applications. Please remember that although VELMODE primarily
regulates speed, the outer loop is still position. This means that while
regulating speed, Mx4 continually tries to zero the position error.
Command Sequence Example
MAXACC () ;set the maximum accel. so system can be stopped
CTRL () ;set the gains
KILIMIT ()
.
VELMODE ()

EXAMPLE
Engage axis 2 in velocity mode with a velocity of 3.71 counts/200 s.

VELMODE (0x2,3.71)

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-209

VIEWVEC Vx4++ option command

FUNCTION Specify Vx4++ State Variables to View

EXECUTION 200 microseconds

SYNTAX VIEWVEC (n, m)

USAGE DSPL (Motion), Host (command code: 83h)

ARGUMENTS

n bit coding of the specified axis(es)
m value specifying state variable

 m=0 Iqs error
 m=1 Ids error
 m=2 Iqs feedback
 m=3 Ids feedback
 m=4 Iqs command
 m=5 Ir feedback
 m=6 Is feedback
 m=7 It feedback

DESCRIPTION

This command selects the Vx4++ state variable which is available in
the Mx4 Dual Port RAM and also with the VECT4_PARx DSPL
identifiers.

As is evident above, only 1 variable may be “viewed” per axis at any
given time.

SEE ALSO none

APPLICATION

See Vx4++ User's Guide

EXAMPLE

Change the Vx4++ state variable selection to Ids feedback for axis 1.
Any subsequent VECT4_PAR1 accesses will yield the axis 1 Ids
feedback value.

VIEWVEC (0x1, 3)

DSPL Command Set

8-210

WAIT_UNTIL

FUNCTION Halt Program Execution Until Condition is True.

EXECUTION Depends on user arguments

SYNTAX WAIT_UNTIL (conditional expression)

USAGE DSPL (PLC, Motion)

ARGUMENTS

conditional expression

The conditional expression must be boolean, equating to True or False.
The conditional expression may consist of multiple boolean conditions
ANDed or ORed together. The conditional expression operators are:

 > greater than
 < less than
 >= greater than or equal
 < = less than or equal
 = = equal
 != not equal
 AND logical AND
 OR logical OR
 & bit-wise AND

The conditional expression is enclosed via sets of parentheses. Nested
parentheses may be used when multiple boolean conditions are used or
more complex conditional expressions are implemented.

Note: If nested parentheses are not used to indicate evaluation
precedence in a conditional expression, the expression will be
evaluated from left-to-right.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-211

WAIT_UNTIL cont.

DESCRIPTION

This instruction controls the flow of the program. If WAIT_UNTIL
statements are used, Mx4 will wait until the boolean condition is True,
then it executes the instructions after the WAIT_UNTIL statement.

SEE ALSO none

APPLICATION

All general motion application programs.

EXAMPLE

Halt program execution or 'wait' for the axis four command velocity to
be greater than -4.55 and an active IN0 (1) input before continuing.

WAIT_UNTIL ((CVEL4 > -4.55) AND (INP1_REG & 0x0001))

DSPL Command Set

8-212

WAIT_UNTIL_RTC

FUNCTION Halt Program Execution Until RTC Signal Is Received

EXECUTION Runs until an RTC is detected

SYNTAX WAIT_UNTIL_RTC ()

USAGE DSPL (Motion)

ARGUMENTS

none

DESCRIPTION

After execution of the WAIT_UNTIL_RTC command, the DSPL Motion
program waits until Mx4 receives (from the host) the RTC command
SIGNAL_DSPL.

SEE ALSO none

APPLICATION

All generic motion application programs.

EXAMPLE

Halt program execution until the SIGNAL_DSPL RTC is received from
the host.

 WAIT_UNTIL_RTC ()

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-213

WEND

FUNCTION Designates End of WHILE-WEND Structure

EXECUTION 10 microseconds

SYNTAX WHILE (conditional expression)
 program code to execute while WHILE condition is True
WEND

USAGE DSPL (PLC, Motion)

ARGUMENTS

none

DESCRIPTION

The WHILE-WEND structure is used for conditional repeat loop program
execution. WEND designates the last line of the WHILE-WEND structure. A
WEND statement must be included with every WHILE statement.

SEE ALSO WHILE

APPLICATION

See Application Notes

EXAMPLE

While the following error of axis two is less than 50 counts, monitor the
velocity of axis one. If the command velocity of axis one is greater than
2.0, bring axis one to a halt.

 WHILE (ERR2 < 50)
 IF (CVEL1 > 2.0)
 STOP (0x1)
 ENDIF
 WEND

DSPL Command Set

8-214

WHILE

FUNCTION Designates Beginning of WHILE - WEND Structure

EXECUTION 200 microseconds

SYNTAX WHILE (conditional expression)
 program code to execute while condition is True
WEND

USAGE DSPL (PLC, Motion)

ARGUMENTS

conditional expression

The conditional expression must be boolean, equating to True or False.
The conditional expression may consist of multiple boolean conditions
ANDed or ORed together. The conditional expression operators are:

 > greater than
 < less than
 >= greater than or equal
 <= less than or equal
 = = equal
 != not equal
 AND logical AND
 OR logical OR
 & bit-wise AND

See 'DSPL Variables' for the complete list of variables which may be
used in conditional expressions.

The conditional expression is enclosed via sets of parentheses. Nested
parentheses may be used when multiple boolean conditions are used or
more complex conditional expressions are implemented.

Note: If nested parentheses are not used to indicate evaluation
precedence in a conditional expression, the expression will be
evaluated from left-to-right.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-215

WHILE cont.

For example,

WHILE ((VAR1 > 100) AND (POS2 > 100) AND
(ERR1 == 200) OR (IN_REG1 & 0x3) AND
(CVEL1 > 10))

This line is interpreted in DSPL as:

WHILE ({ { { [(VAR1 > 100) AND (POS2 > 100)]
AND (ERR1 == 200) } OR
(IN_REG1 & 0x3) }AND ((CVEL1 > 10) })

DESCRIPTION

The WHILE-WEND structure allows for a repeating program loop based on
a conditional expression. The program commands between the WHILE
and WEND lines are executed while the conditional expression is TRUE.
If the conditional expression evaluates FALSE, program execution
jumps to the first command following the WEND command.

WHILE-WEND structures may be nested.

SEE ALSO WEND

APPLICATION

See Application Notes

EXAMPLE

While the following error of axis two is less than 50 counts, monitor the
velocity of axis one. If the command velocity of axis one is greater than
2.0, bring axis one to a halt.

 WHILE (ERR2 < 50)
 IF (CVEL1 > 2.0)
 STOP (0x1)
 ENDIF
 WEND

DSPL Command Set

8-216

= OPERATOR

OPERATOR = (Assignment)

SYNTAX var = valu1

 or

 tablename = valu2

USAGE DSPL (PLC, Motion)

ARGUMENTS

var DSPL variable (VAR1 through VAR128)

valu1 A constant real number,
 variable (VAR1 through VAR64), state variable,
 ADC value, table value, function’s return value, or the

result of an operation

tablename TABLE_P or TABLE_V (including index)

valu2 A constant real number or
 variable (VAR1 through VAR64)

DESCRIPTION

This operator (=) is used to set the value of a DSPL variable. The
assignment operator can also be used to assign either a constant or
variable value to a location in TABLE_P or TABLE_V.

Note: This operation must be used when invoking any of DSPL’s
basic arithmetic operators, elementary math functions, or
trigonometric functions.

SEE ALSO +, -, *, /, ABS, ARCTAN, COS, FRAC, INT, SIGN, SIN,
 SQRT, TAN

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-217

= cont. OPERATOR

EXAMPLE

The first example stores a constant in VAR32:

 VAR32 = -9001.42

The second example stores the value of the command velocity of axis4
into VAR9:

 VAR9 = CVEL1

The third example stores the result of the given addition in VAR11:

 VAR11 = VAR21 + 22.3

The fourth example assigns the value stored at index 2019 of TABLE_V
to VAR25:

 VAR25 = TABLE_V(2019)

The fifth example stores a constant in TABLE_P at the index value
specified by the value stored in VAR4:

 TABLE_P(VAR4) = 7743

DSPL Command Set

8-218

+ OPERATOR

OPERATOR + (Addition)

EXECUTION 100 microseconds

SYNTAX valu1 + valu2

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu1 A constant real number,
 variable (VAR1 through VAR128),
 state variable, or ADC value

valu2 A constant real number,
 variable (VAR1 through VAR128),
 state variable, or ADC value

DESCRIPTION

The addition operator (+) is used to add two values. If a value is a
variable, the value stored in the variable can be negated before
performing the addition by inserting a minus sign (-) immediately
before the variable name.

Note: This operator can only be used with a variable assignment
statement. For example:

VAR15 = VAR2 + 12.5

Note: No more than one of the basic arithmetic operators (+, -, *, /)
can appear on a single line of DSPL code: The following are
therefore NOT valid lines of DSPL code:

VAR1 = VAR9 + VAR53 + 2.54
VAR2 = VAR9 + VAR3 * VAR4

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-219

+ cont. OPERATOR

Note: No more than one of the values to be added can be a DSPL
state variable or ADC value. The following is therefore NOT
a valid line of DSPL code:

VAR15 = ERR3 + POS1

SEE ALSO -, *, /

EXAMPLE

The first example adds two numbers, -9001.42 and 633.7 and stores the
result in VAR31:

 VAR31 = -9001.42 + 633.7

The second example adds 57 to the value stored in VAR22. The result is
stored in VAR51:

 VAR51 = 57 + VAR22

The third example negates the value stored in VAR13, negates the value
in VAR29, and adds the two values. The result is stored in VAR29:

 VAR29 = -VAR13 + -VAR29

The fourth example adds the command position of axis 3 to the value
stored in VAR41. The result is stored in VAR14:

 VAR14 = CPOS3 + VAR41

DSPL Command Set

8-220

- OPERATOR

OPERATOR - (Subtraction)

EXECUTION 100 microseconds

SYNTAX valu1 - valu2

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu1 A constant real number,
 variable (VAR1 through VAR128),
 state variable, or ADC value

valu2 A constant real number,
 variable (VAR1 through VAR128),
 state variable, or ADC value

DESCRIPTION

The subtraction operator (-) is used to subtract one value from another.
If a value is a variable, the value stored in the variable can be negated
before performing the subtraction by inserting a minus sign (-)
immediately before the variable name.

Note: This operator can only be used with a variable assignment
statement. For example:

VAR25 = VAR52 - 99.2

Note: No more than one of the basic arithmetic operators (+, -, *, /)
can appear on a single line of DSPL code: The following are
therefore NOT valid lines of DSPL code:

VAR31 = VAR9 - VAR3 - 2.54
VAR27 = VAR9 + 132.3 - VAR4

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-221

- cont. OPERATOR

Note: No more than one of the values to be operated on can be a
DSPL state variable or ADC value. The following is
therefore NOT a valid line of DSPL code:

VAR4 = ERR2 - CVEL4

SEE ALSO +, *, /

EXAMPLE

The first example subtracts 1 from 0.041 and stores the result in VAR60

 VAR60 = 0.041 - 1

The second example subtracts the value stored in VAR2 from 44.4. The
result is stored in VAR2:

 VAR2 = 44.4 - VAR2

The third example negates the value stored in VAR3, then subtracts the
value in VAR12. The result is stored in VAR9:

 VAR9 = -VAR3 - VAR12

The fourth example subtracts the command velocity of axis 1 from the
value stored in VAR4. The result is stored in VAR49:

 VAR49 = VAR4 - CVEL1

DSPL Command Set

8-222

* OPERATOR

OPERATOR * (Multiplication)

EXECUTION 100 microseconds

SYNTAX valu1 * valu2

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu1 A constant real number,
 variable (VAR1 through VAR128),
 state variable, or ADC value

valu2 A constant real number,
 variable (VAR1 through VAR128),
 state variable, or ADC value

DESCRIPTION

The multiplication operator (*) is used to multiply one value by
another. If a value is a variable, the value stored in the variable can be
negated before performing the multiplication by inserting a minus sign
(-) immediately before the variable name.

Note: This operator can only be used with a variable assignment
statement. For example:

VAR4 = VAR25 * -8902

Note: No more than one of the basic arithmetic operators (+, -, *, /)
can appear on a single line of DSPL code: The following are
therefore NOT valid lines of DSPL code:

VAR12 = VAR59 * 22.86 * VAR5
VAR17 = 9 - VAR3 * VAR24

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-223

* cont. OPERATOR

Note: No more than one of the values to be operated on can be a
DSPL state variable or ADC value. The following is
therefore NOT a valid line of DSPL code:

VAR11 = CPOS1 - ERR4

SEE ALSO +, -, /

EXAMPLE

The first example multiplies two numbers 0.1751 and 0.441and stores
the result in VAR64

 VAR64 = 0.1751 * 0.441

The second example multiplies the value stored in VAR22 by -100. The
result is stored in VAR2:

 VAR2 = -100 * VAR22

The third example negates the value stored in VAR5, negates the value in
VAR48, then multiplies the two resulting values. The result is stored in
VAR39:

 VAR39 = -VAR5 * -VAR48

The fourth example multiplies the actual velocity of axis 4 by the value
stored in VAR7. The result is stored in VAR49:

 VAR49 = VEL4 * VAR7

DSPL Command Set

8-224

/ OPERATOR

OPERATOR / (Division)

EXECUTION 100 microseconds

SYNTAX valu1 / valu2

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu1 A constant real number,
 variable (VAR1 through VAR128),
 state variable, or ADC value

valu2 A constant real number or
 variable (VAR1 through VAR128)

DESCRIPTION

The division operator (/) is used to divide one value by another. If a
value is a variable, the value stored in the variable can be negated
before performing the division by inserting a minus sign (-)
immediately before the variable name.

Note: This operator can only be used with a variable assignment
statement. For example:

VAR4 = VAR25 / -8902

Note: No more than one of the basic arithmetic operators (+, -, *, /)
can appear on a single line of DSPL code: The following are
therefore NOT valid lines of DSPL code:

VAR62 = VAR20 / 29 / 14.1
VAR1 = 9 + VAR10 / VAR2

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-225

/ cont. OPERATOR

Note: Only the numerator value (valu1) can be a DSPL state
variable or ADC value. The following is therefore NOT a
valid line of DSPL code:

VAR19 = VAR31 / CVEL4

SEE ALSO +, -, *

EXAMPLE

The first example divides -1.51 by 1111 and stores the result in VAR60

 VAR60 = -1.51 / 1111

The second example divides the value stored in ADC3 by 22.91. The
result is stored in VAR62:

 VAR62 = ADC3 / 22.91

The third example negates the value stored in VAR55, then divides the
resulting value by the value stored in VAR12. The result is stored in
VAR3:

 VAR3 = -VAR55 / VAR12

The fourth example divides the actual position of axis 2 by the value
stored in VAR1. The result is stored in VAR9:

 VAR9 = POS2 / VAR1

DSPL Command Set

8-226

~ OPERATOR

OPERATOR ~ (Bitwise Complement)

EXECUTION 60 microseconds

SYNTAX ~i_reg

USAGE DSPL (PLC, Motion)

ARGUMENTS

i_reg One of the DSPL interrupt registers
 (i.e. ESTOP_REG, FERR_REG, FERRH_REG,
 INDEX_REG, MOTCP_REG, OFFSET_REG,

 POSBRK_REG, or PROBE_REG)
 or
 One of the DSPL input registers
 (i.e. INP1_REG or INP2_REG)

DESCRIPTION

The bitwise complement operator (~) is used to find the complement of
the contents of one of the DSPL interrupt or input registers before it is
used in a DSPL conditional expression.

Note: This operator can only be used in a DSPL conditional
expression inside of a DSPL conditional structure (i.e. IF,
WHILE, or WAIT_UNTIL). For example:

WAIT_UNTIL(~FERR_REG & 0x02)

Note: The bitwise complement operator can only be used with the
DSPL registers, and will NOT work with DSPL variables,
state variables, or table values.

SEE ALSO &, AND, OR, IF, WAIT_UNTIL, WHILE

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-227

~ cont. OPERATOR

EXAMPLE

The conditional expression used in the WAIT_UNTIL statement below
masks out all bits except bits 0 and 3 of the complemented index pulse
interrupt register:

 WAIT_UNTIL(~INDEX_REG & 0x09)

DSPL Command Set

8-228

& OPERATOR

OPERATOR &(Bitwise AND)

EXECUTION 75 microseconds

SYNTAX i_reg & mask_val

USAGE DSPL (PLC, Motion)

ARGUMENTS

i_reg One of the DSPL interrupt registers
 (i.e. ESTOP_REG, FERR_REG, FERRH_REG,
 INDEX_REG, MOTCP_REG, OFFSET_REG,

 POSBRK_REG, or PROBE_REG)
 or
 One of the DSPL input registers
 (i.e. INP1_REG or INP2_REG)

mask_val A user defined bit mask that must be used in conjunction

with the bitwise operator &. The mask follows the format
0x????, where ???? is a 16-bit hexadecimal value. For
example, a mask value of 0x0204 will mask out all bits
except bits 2 and 9.

DESCRIPTION

The bitwise AND operator (&) is used to mask selected bits in a DSPL
interrupt or input register before it is used in a DSPL conditional
expression.

Note: This operator is only used in a DSPL conditional expression
inside of a DSPL conditional structure (i.e. IF, WHILE, or
WAIT_UNTIL). For example:

WAIT_UNTIL(PROBE_REG & 0x09)

Note: The bitwise AND operator can only be used with the DSPL
registers, and will NOT work with DSPL variables, state
variables, or table values.

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-229

& cont. OPERATOR

SEE ALSO ~, AND, OR, IF, WAIT_UNTIL, WHILE

EXAMPLE

The conditional expression used in the IF statement below masks out all
bits except bits 1 and 3 of input register 2:

 IF(INP2_REG & 0x0A)

DSPL Command Set

8-230

<, >, <=, >=, ==, != OPERATOR

OPERATORS < (Less than), > (Greater than), <= (Less than or equal to)

 >= (Greater than or equal to), = (Equal to), != (Not equal to)

SYNTAX valu1 OP valu2

USAGE DSPL (PLC, Motion)

ARGUMENTS

valu1 A DSPL variable or state variable

OP One of the following relational operators:
 <, >, <=, >=, ==, !=

valu2 A DSPL variable, state variable or a constant real number.

DESCRIPTION

The relational operators are used to compare two values. A result of 1
is returned only if the specified relationship between the two values is
true. otherwise a result of 0 is returned.

Note: These operators are only used in DSPL conditional statements
inside of a DSPL conditional structure (i.e. IF,

WHILE, or WAIT_UNTIL). For example:

WAIT_UNTIL(VAR1 >= 1000)

Note: No more than one of the two values to be compared can be a
state variable. The following is therefore NOT a valid line of
DSPL code

IF (POS1 <= POS4)

SEE ALSO ~, &, AND, OR, IF, WAIT_UNTIL, WHILE

DSPL Command Set

DSPL Programmer’s Guide v5.311 8-231

<, >, <=, >=, ==, != cont. OPERATOR

EXAMPLE

In the first example, the WAIT_UNTIL statement below will stop the
execution of the DSPL code as long as the actual position of axis 1 is
equal to 1000:

 WAIT_UNTIL(POS1 == 1000)

In the second example, the WAIT_UNTIL statement below will stop the
execution of the DSPL code as long as the actual velocity of axis 3 is
less than the value stored in VAR25:

 WAIT_UNTIL(VEL3 < VAR25)

In the third example, the WAIT_UNTIL statement below will stop the
execution of the DSPL code as long as the value in VAR19 is greater
than or equal to 225.7:

 WAIT_UNTIL(VAR19 >= 225.7)

In the fourth example, the WAIT_UNTIL statement below will stop the
execution of the DSPL code as long as the value stored in VAR60 is less
than or equal to the value stored in VAR1:

 WAIT_UNTIL(VAR60 <= VAR1)

Appendix A A-1

Appendix A:

DSPEtherCAT I/O Module Processing

DSPEtherCAT supports input and output slave devices such as
Beckhoff EL1002 input module (which has two inputs) and EL2002
output module (which has two outputs). See Figure 1.

Input and output modules are installed in any order on Beckhoff
EK1100 bus couplers, and EK1100 bus couplers are then connected to
the EtherCAT bus at any position in the bus. Upon power up, the
DSPEtherCAT card scans the EtherCAT bus starting at the node which
is closest to the DSPEtherCAT, and assigns input and output modules
to bits in DSPL input and output registers as it encounters the modules.

Modules attached to an EK1100 will be scanned in the order in which
they are attached to the EK1100; that is, the module which is closest to
the EK1100 will be scanned first. The application will scan all modules
attached to an EK1100 before continuing to scan the EtherCAT bus for
the next EK1100.

Input modules are assigned to be 0 in the argument of DSPL command
ec_map(), which is called object function.

Output modules are assigned to be 1 in the argument of DSPL
command ec_map(),which is called object function.

The ec_query DSPL instruction has the following format:

ec_query(Slave index, Sync index, PDO index,
Entry index, DSPL variable number)

Appendix A

A-2

Slave index is its location (starting with zero), and DSPL variable

number starting the number at which object data will be written.

Example

ec_query(1,0xff,0,0, 1) ; Query the EL1002’s
first entry (sync 0, PDO 0, entry 0)

ec_query(2,0xff,0,0, 5) ; Query the EL2002’s
first entry (sync 0, PDO 0, entry 0)

The ec_map DSPL instruction has the following format:

ec_map(Slave index, Object index, Object
subindex, Object domain, Object
function, Object bit count, DSPL
variable number)

Object domain will be set to be 1, 2, or 3, which means read, written, and

read/written respectively. Setting object function to be 0 means it is an

input module, while setting object function to be 1 means it is an output

module.

Example

ec_map(3, 0x6000, 0x11, 3, 0, 12, 100)

This DSPL instruction maps DSPL variable 100 to the fourth slave object (EL3064) at index 6000h
and subindex 11. The object will be mapped to the read/write domain, since object domain is 3, and
it will be an input from the device, since object function is 0. Additionally, this is a 12-bit ADC slice,
and the ADC value for ADC channel 1 will be shown in var99.

 Appendix A-1

 A-3

PC Ethernet

DSPEtherCAT

(Stand-Alone)

E
K
1
1
0
0

S
I
G
M
A
7

S
I
G
M
A
7

S
I
G
M
A
7

E
L
2
0
0
2

 E
 L
 1
 0
 0
 2

BECKHOFF I/Os YASKAWA DRIVES

J4A J4B

X1
IN

X2
 OUT

 CN
 6A

 CN
 6B

 CN
 6A

EtherCAT

 Figure 1: DSP EtherCAT Ethernet cable connections using Beckhoff EK1100 bus coupler and
 Yaskawa Step7 drives.

 Appendix B B-1

Appendix B:

DSPEtherCAT Estop I/O Processing

The following lines are example for EtherCAT mapping via DSPL

PLC_PROGRAM:

run_m_program(MAIN)

END

MAIN:

ec_query(1,0xff,0,0, 1); Query the EL1002's first entry
ec_query (2,0xff,0,0, 5); ;Query the EL2002's first entry
ec_query(3,0xff,0,0, 10); ;Query the EL3064's first entry

ec_map(1, 0x6000, 0x01, 3, 0, 1, 100); Map the EL1002's two bits to Var100
ec_map(2, 0x7000, 0x01, 3, 1, 1, 101); Map the EL2002's two bits to Var101
ec_map(3, 0x6000, 0x11, 3, 0, 12, 102); Map the EL3064's first analog input to Var102
ec_map(3, 0x6010, 0x11, 3, 0, 12, 103); Map the EL3064's
second analog input to Var103

ec_en();

drive_on(0x7) ;enable drives
pos_preset(0x7,0,0,0)
maxacc(0x7,1,1,1)

 Appendix B

 B-2

velmode(0x7,100,100,-100) ;move all motors

while (var100 == 0) ; if var100=1(ESTOP input)
wend

stop(0x7) ; then stop all motors

END

Appendix C C-1

Appendix C:

Identifying Network Slaves Using User
C Program

Appendix C demonstrates how the EtherCAT slaves can be identified
by reading DPR locations of the DSPEtherCAT. To do this, you may
use the PARREAD command that is included in Mx4nt.dll. This .dll
must be linked to your C program.

PARREAD

m = 40h Information about a single
 EtherCAT slave

The Parread (a Real Time Command included in Mx4nt.dll, must be
linked with user’s C program) returns configuration information for a
single EtherCAT slave. Information for the slave with index zero (at
8B8h in Dual Port Ram/DPR of the DSPEtherCAT product) is
returned on the first call to this Parread, then information for the
slave with node index one is returned on the next call, and so on. After
information for all slaves has been returned, this functions starts over
with information on the slave at index zero.

0B8h Vendor ID byte 0
0B9h Vendor ID byte 1
0BAh Vendor ID byte 2
0BBh Vendor ID byte 3

0BCh Product ID byte 0
0BDh Product ID byte 1
0BEh Product ID byte 2
0BFh Product ID byte 3

Appendix C

C-2

8B8h Slave index (ranges from 0 to
 (contents of 8B9h) - 1)
8B9h Total number of EtherCAT slaves
8BAh Bus position of the slaves

8BBh Slave type:

 1 = Drive
 2 = Output module
 3 = Input module

8BCh Slave mapping:

 For a drive, this will be the
 axis assigned to the drive.

 For an output module, this
 will be the bit index into the
 two 16-bit arguments for DSPL
 commands outp_on()and
 outp_off()at which the module's
 outputs begin.

For example, the two outputs of a Beckhoff EL2002 mapped starting at
bit 10 would be turned off with DSPL instruction
outp_off(0x0C00, 0x0000). The two outputs of an EL2002
mapped starting at bit 20 would be turned on with DSPL instruction
outp_on(0x0000,0x0030).

For an input module, this will be the bit index into 16-bit DSPL
registers inp1_reg and inp2_reg at which the module's inputs
begin. For example, the two inputs of aBeckhoff EL1002 mapped
starting at bit 10 would be accessed by masking bits in inp1_reg
with the expression (inp1_reg & 0x0C00). The two inputs of an
EL1002 mapped starting at bit 20 would be accessed by masking bits
in inp2_reg with the expression (inp2_reg & 0x0030).

Example feedback for a Beckhoff EL1002 input module:

Vendor ID: 00000002h
Product ID: 03EA3052h
Slave index zero (first slave in the bus
map table); the table contains data for
three slaves. EtherCAT bus position of
this slave is zero.

 Appendix C

 C-3

Slave type three (input module), assigned
to bits 4 and 5 of DSPL input register
inp1_reg.

0B7h = 40h (EtherCAT parread successful)

0B8h = 02h (Vendor ID least significant
byte)
0B9h = 00h (Vendor ID)
0BAh = 00h (Vendor ID)
0BBh = 00h (Vendor ID most significant
byte)

0BCh = 52h (Product ID least significant
byte)
0BDh = 30h (Product ID)
0BEh = EAh (Product ID)
0BFh = 03h (Product ID most significant
byte)

8B8h = 00h (Zero-based EtherCAT slave
number)
8B9h = 03h (Total number of EtherCAT
slaves)
8BAh = 00h (Zero-based EtherCAT bus
position)
8BBh = 03h (Slave type)
8BCh = 04h (Offset into DSPL input
registers at which the module is mapped)

A DSPL if statement which is true when both inputs are at a logic-
high level would be:

if(inp1_reg & 0x0030)
 ...
endif

Example feedback for a Beckhoff EL2002 output module:

Vendor ID: 00000002h
Product ID: 07D23052h

Slave index one (second slave in the bus map table); the table contains
data for three slaves. EtherCAT bus position of this slave is one. Slave
type two (output module), assigned to bits 22 and 23 of the DSPL
output registers.

Appendix C

C-4

0B7h = 40h (EtherCAT parread successful)

0B8h = 02h (Vendor ID least significant
byte)
0B9h = 00h (Vendor ID)
0BAh = 00h (Vendor ID)
0BBh = 00h (Vendor ID most significant
byte)

0BCh = 52h (Product ID least significant
byte)
0BDh = 30h (Product ID)
0BEh = D2h (Product ID)
0BFh = 07h (Product ID most significant
byte)

8B8h = 01h (Zero-based EtherCAT slave
number)
8B9h = 03h (Total number of EtherCAT
slaves)
8BAh = 01h (Zero-based EtherCAT bus
position)
8BBh = 02h (Slave type)
8BCh = 16h (Offset into DSPL output
registers at which the module is mapped)

To turn both outputs on this module on, use DSPL instruction

outp_on(0x0000,0x00C0)

Example feedback for a Yaskawa Sigma 7 drive:

Vendor ID: 00000539h
Product ID: 02200301h

Slave index two (third slave in the bus map table); the table contains
data for three slaves. EtherCAT bus position of this slave is two. Slave
type one (motor drive), assigned to axis one.

0B7h = 40h (EtherCAT parread successful)

0B8h = 39h (Vendor ID least significant
byte)
0B9h = 05h (Vendor ID)
0BAh = 00h (Vendor ID)

 Appendix C

 C-5

0BBh = 00h (Vendor ID most significant
byte)

0BCh = 01h (Product ID least significant
byte)
0BDh = 03h (Product ID)
0BEh = 20h (Product ID)
0BFh = 02h (Product ID most significant
byte)

8B8h = 02h (Zero-based EtherCAT slave
number)
8B9h = 03h (Total number of EtherCAT
slaves)
8BAh = 02h (Zero-based EtherCAT bus
position)
8BBh = 01h (Slave type)
8BCh = 01h (Axis to which the drive is
assigned)

PC Ethernet

DSPEtherCAT

(Stand-Alone)

E
K
1
1
0
0

S
I
G
M
A
7

S
I
G
M
A
7

S
I
G
M
A
7

E
L
2
0
0
2

 E
 L
 1
 0
 0
 2

BECKHOFF I/Os YASKAWA DRIVES

J4A J4B

X1
IN

X2
 OUT

 CN
 6A

 CN
 6B

 CN
 6A

EtherCAT

Appendix D D-1

Appendix D:

Hardware & Network Connections

Providing Power To DSPEtherCAT

A +5 v supply is required to power up a DSPEtherCAT in one of the
following (but not both) ways:

(A) Through barrel connector, located at the upper left corner of the

board. Choosing this connector, the motion controller can be used
as a stand-alone unit (does not need to be plugged into a PC).

(B) Through plugging the DSPEtherCAT PCI card into a PCI card slot.

A
C D

B

In the second method, DSPEtherCAT only uses PC for its power and
nothing else.

Appendix D

D-2

DSPEtherCAT Ethernet Connection to a PC

Using a standard Ethernet cable, connector C (J4A) will connect to a
PC for the purpose of system diagnostics and application development.

DSPEtherCAT Connection to EtherCAT Network

The EtherCAT connector D (J4B), must to be connected to your
remote EtherCAT I/O unit. Subsequently, the remote I/O unit must be
daisy chained to your drive amplifiers.

PC Ethernet

DSPEtherCAT

(Stand-Alone)

E
K
1
1
0
0

S
I
G
M
A
7

S
I
G
M
A
7

S
I
G
M
A
7

E
L
2
0
0
2

 E
 L
 1
 0
 0
 2

BECKHOFF I/Os YASKAWA DRIVES

J4A J4B

X1
IN

X2
 OUT

 CN
 6A

 CN
 6B

 CN
 6A

EtherCAT

